Double Allee effects and extinction in the island fox
An Allee effect (AE) occurs in populations when individuals suffer a decrease in fitness at low densities. If a fitness component is reduced (component AE), per capita population growth rates may decline as a consequence (demographic AE) and extinction risk is increased. The island fox (Urocyon litt...
Veröffentlicht in: | Conservation biology : the journal of the Society for Conservation Biology. - 1999. - 21(2007), 4 vom: 15. Aug., Seite 1082-91 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2007
|
Zugriff auf das übergeordnete Werk: | Conservation biology : the journal of the Society for Conservation Biology |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. |
Zusammenfassung: | An Allee effect (AE) occurs in populations when individuals suffer a decrease in fitness at low densities. If a fitness component is reduced (component AE), per capita population growth rates may decline as a consequence (demographic AE) and extinction risk is increased. The island fox (Urocyon littoralis) is endemic to six of the eight California Channel Islands. Population crashes have coincided with an increase in predation by Golden Eagles (Aquila chrysaetos). We propose that AEs could render fox populations more sensitive and may be a likely explanation for their sharp decline. We analyzed demographic data collected between 1988 and 2000 to test whether fox density (1) influences survival and reproductive rates; (2) interacts with eagle presence and affects fox fitness parameters; and (3) influences per capita fox population trends. A double component AE simultaneously influenced survival (of adults and pups) and proportion of breeding adult females. The adult survival AE was driven by predation by eagles. These component AEs led to a demographic AE. Multiple-component AEs, a predation-driven AE, and the simultaneous occurrence of both component and demographic AEs in a mammal are all previously unreported processes. Populations below 7 foxes/km(2) could have suboptimal population growth rates due to the demographic AE, and AEs may have contributed to the dramatic declines in three fox populations. Because fox densities in critically endangered populations are well below this level, removing Golden Eagles appears necessary to prevent a predation-driven AE. Conservationists should also be aware of AEs when planning the release of captive foxes. More generally, our findings highlight the danger of overlooking AEs in the conservation of populations of rare or threatened species |
---|---|
Beschreibung: | Date Completed 04.02.2008 Date Revised 04.01.2021 published: Print Citation Status MEDLINE |
ISSN: | 1523-1739 |