Electrochemical factors controlling the patterning of metals on SAM-coated substrates

Alkanethiol self-assembled monolayers (SAMs) have been used in electrochemical microfabrication processes. The reductive desorption potential of alkanethiol SAMs, Edes, can be comparable to, greater than, or less than the metal reduction potential during electrodeposition, Emet. As a result, the SAM...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 23(2007), 19 vom: 11. Sept., Seite 9661-6
1. Verfasser: Nelson, Jeffrey B (VerfasserIn)
Weitere Verfasser: Schwartz, Daniel T
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Alkanethiol self-assembled monolayers (SAMs) have been used in electrochemical microfabrication processes. The reductive desorption potential of alkanethiol SAMs, Edes, can be comparable to, greater than, or less than the metal reduction potential during electrodeposition, Emet. As a result, the SAM layer can passivate the surface or desorb simultaneously with metal deposition. We show that these electrochemical traits can be combined with a rastering microjet electrode to pattern SAMs directly and create patterned metal films without lithography steps. For the case of copper deposition on 1-octanethiol (OT)- and 1-dodecanethiol (DT)-coated substrates, Edes is significantly negative of Emet, resulting in high-resolution metal patterns with poor nucleation and poor adhesion to the substrate. However, nickel patterns deposited on 1-butanethiol (BT), OT, and DT have traits similar to bare gold (excellent nucleation and adhesion) because Edes is positive of Emet. Substrates with SAMs also suppress adventitious chemistries that occur distant from the rastering microjet electrode, such as oxygen reduction, making samples more corrosion resistant and improving the overall patterning process that we call electrochemical printing
Beschreibung:Date Completed 24.10.2007
Date Revised 04.09.2007
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827