|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM171515382 |
003 |
DE-627 |
005 |
20231223125834.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2007 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/j.1469-8137.2007.02107.x
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0572.xml
|
035 |
|
|
|a (DE-627)NLM171515382
|
035 |
|
|
|a (NLM)17635230
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Herrera-Medina, María José
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza
|
264 |
|
1 |
|c 2007
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 28.09.2007
|
500 |
|
|
|a Date Revised 07.12.2022
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a CommentIn: New Phytol. 2007;175(3):383-6. - PMID 17635214
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The role of abscisic acid (ABA) during the establishment of the arbuscular mycorrhiza (AM) was studied using ABA sitiens tomato (Lycopersicon esculentum) mutants with reduced ABA concentrations. Sitiens plants and wild-type (WT) plants were colonized by Glomus intraradices. Trypan blue and alkaline phosphatase histochemical staining procedures were used to determine both root colonization and fungal efficiency. Exogenous ABA and silver thiosulfate (STS) were applied to establish the role of ABA and putative antagonistic cross-talk between ABA and ethylene during AM formation, respectively. Sitiens plants were less susceptible to the AM fungus than WT plants. Microscopic observations and arbuscule quantification showed differences in arbuscule morphology between WT and sitiens plants. Both ABA and STS increased susceptibility to the AM fungus in WT and sitiens plants. Fungal alkaline phosphate activity in sitiens mutants was completely restored by ABA application. * The results demonstrate that ABA contributes to the susceptibility of tomato to infection by AM fungi, and that it seems to play an important role in the development of the complete arbuscule and its functionality. Ethylene perception is crucial to AM regulation, and the impairment of mycorrhiza development in ABA-deficient plants is at least partly attributable to ethylene
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Ethylenes
|2 NLM
|
650 |
|
7 |
|a Abscisic Acid
|2 NLM
|
650 |
|
7 |
|a 72S9A8J5GW
|2 NLM
|
650 |
|
7 |
|a ethylene
|2 NLM
|
650 |
|
7 |
|a 91GW059KN7
|2 NLM
|
700 |
1 |
|
|a Steinkellner, Siegrid
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Vierheilig, Horst
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ocampo Bote, Juan Antonio
|e verfasserin
|4 aut
|
700 |
1 |
|
|a García Garrido, José Manuel
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 175(2007), 3 vom: 01., Seite 554-564
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:175
|g year:2007
|g number:3
|g day:01
|g pages:554-564
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/j.1469-8137.2007.02107.x
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 175
|j 2007
|e 3
|b 01
|h 554-564
|