Soft color segmentation and its applications

We propose an automatic approach to soft color segmentation, which produces soft color segments with appropriate amount of overlapping and transparency essential to synthesizing natural images for a wide range of image-based applications. While many state-of-the-art and complex techniques are excell...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 29(2007), 9 vom: 14. Sept., Seite 1520-37
Auteur principal: Tai, Yu-Wing (Auteur)
Autres auteurs: Jia, Jiaya, Tang, Chi-Keung
Format: Article
Langue:English
Publié: 2007
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM171437659
003 DE-627
005 20250208114124.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0572.xml 
035 |a (DE-627)NLM171437659 
035 |a (NLM)17627041 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tai, Yu-Wing  |e verfasserin  |4 aut 
245 1 0 |a Soft color segmentation and its applications 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 31.12.2007 
500 |a Date Revised 03.11.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We propose an automatic approach to soft color segmentation, which produces soft color segments with appropriate amount of overlapping and transparency essential to synthesizing natural images for a wide range of image-based applications. While many state-of-the-art and complex techniques are excellent at partitioning an input image to facilitate deriving a semantic description of the scene, to achieve seamless image synthesis, we advocate to a segmentation approach designed to maintain spatial and color coherence among soft segments while preserving discontinuities, by assigning to each pixel a set of soft labels corresponding to their respective color distributions. We optimize a global objective function which simultaneously exploits the reliability given by global color statistics and flexibility of local image compositing, leading to an image model where the global color statistics of an image is represented by a Gaussian Mixture Model (GMM), while the color of a pixel is explained by a local color mixture model where the weights are defined by the soft labels to the elements of the converged GMM. Transparency is naturally introduced in our probabilistic framework which infers an optimal mixture of colors at an image pixel. To adequately consider global and local information in the same framework, an alternating optimization scheme is proposed to iteratively solve for the global and local model parameters. Our method is fully automatic, and is shown to converge to a good optimal solution. We perform extensive evaluation and comparison, and demonstrate that our method achieves good image synthesis results for image-based applications such as image matting, color transfer, image deblurring, and image colorization 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Jia, Jiaya  |e verfasserin  |4 aut 
700 1 |a Tang, Chi-Keung  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 29(2007), 9 vom: 14. Sept., Seite 1520-37  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:29  |g year:2007  |g number:9  |g day:14  |g month:09  |g pages:1520-37 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 9  |b 14  |c 09  |h 1520-37