Voltage gated carbon nanotube membranes

Membranes composed of an array of aligned carbon nanotubes, functionalized with charged molecular tethers, show voltage gated control of ionic transport through the cores of carbon nanotubes. The functional density of tethered charge molecules is substantially increased by the use of electrochemical...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 23(2007), 16 vom: 31. Juli, Seite 8624-31
1. Verfasser: Majumder, Mainak (VerfasserIn)
Weitere Verfasser: Zhan, Xin, Andrews, Rodney, Hinds, Bruce J
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Diazonium Compounds Ion Channels Membranes, Artificial Nanotubes, Carbon Rubidium MLT4718TJW Paraquat PLG39H7695
Beschreibung
Zusammenfassung:Membranes composed of an array of aligned carbon nanotubes, functionalized with charged molecular tethers, show voltage gated control of ionic transport through the cores of carbon nanotubes. The functional density of tethered charge molecules is substantially increased by the use of electrochemical grafting of diazonium salts. Functionality can be forced to occur at the CNT tip entrances by fast fluid flow of an inert solvent through the core during electrochemical functionalization. The selectivity between Ru(bi-pyridine)(3)2+ and methyl viologen2+ flux is found to be as high as 23 with -130 mV bias applied to the membrane as the working electrode. Changes in the flux and selectivity support a model where charged tethered molecules at the tips are drawn into the CNT core at positive bias. For molecules grafted along the CNT core, negative bias extends the tethered molecules into the core. Electrostatically actuated tethers induce steric hindrance in the CNT core to mimic voltage gated ion channels in a robust large area platform
Beschreibung:Date Completed 02.10.2007
Date Revised 21.11.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827