Compactly supported radial basis functions based collocation method for level-set evolution in image segmentation

The partial differential equation driving level-set evolution in segmentation is usually solved using finite differences schemes. In this paper, we propose an alternative scheme based on radial basis functions (RBFs) collocation. This approach provides a continuous representation of both the implici...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 16(2007), 7 vom: 28. Juli, Seite 1873-87
1. Verfasser: Gelas, Amaud (VerfasserIn)
Weitere Verfasser: Bernard, Olivier, Friboulet, Denis, Prost, Rémy
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM171234049
003 DE-627
005 20231223125233.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0571.xml 
035 |a (DE-627)NLM171234049 
035 |a (NLM)17605385 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gelas, Amaud  |e verfasserin  |4 aut 
245 1 0 |a Compactly supported radial basis functions based collocation method for level-set evolution in image segmentation 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 26.07.2007 
500 |a Date Revised 26.10.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The partial differential equation driving level-set evolution in segmentation is usually solved using finite differences schemes. In this paper, we propose an alternative scheme based on radial basis functions (RBFs) collocation. This approach provides a continuous representation of both the implicit function and its zero level set. We show that compactly supported RBFs (CSRBFs) are particularly well suited to collocation in the framework of segmentation. In addition, CSRBFs allow us to reduce the computation cost using a kd-tree-based strategy for neighborhood representation. Moreover, we show that the usual reinitialization step of the level set may be avoided by simply constraining the l1-norm of the CSRBF parameters. As a consequence, the final solution is topologically more flexible, and may develop new contours (i.e., new zero-level components), which are difficult to obtain using reinitialization. The behavior of this approach is evaluated from numerical simulations and from medical data of various kinds, such as 3-D CT bone images and echocardiographic ultrasound images 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Bernard, Olivier  |e verfasserin  |4 aut 
700 1 |a Friboulet, Denis  |e verfasserin  |4 aut 
700 1 |a Prost, Rémy  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 16(2007), 7 vom: 28. Juli, Seite 1873-87  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:16  |g year:2007  |g number:7  |g day:28  |g month:07  |g pages:1873-87 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 16  |j 2007  |e 7  |b 28  |c 07  |h 1873-87