How eukaryotic algae can adapt to the Spain's Rio Tinto : a neo-Darwinian proposal for rapid adaptation to an extremely hostile ecosystem

Microalgae contributed 60% of the total biomass in the extremely hostile (pH 2 and metal-rich waters) environment of Rio Tinto (which is used as a model for the astrobiology of Mars). These algae are closely related to nonextreme lineages, suggesting that adaptation to Rio Tinto water (RTW) must occ...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 175(2007), 2 vom: 01., Seite 334-339
1. Verfasser: Costas, Eduardo (VerfasserIn)
Weitere Verfasser: Flores-Moya, Antonio, Perdigones, Nieves, Maneiro, Emilia, Blanco, José Luis, García, Marta Eulalia, López-Rodas, Victoria
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Acids Water 059QF0KO0R
Beschreibung
Zusammenfassung:Microalgae contributed 60% of the total biomass in the extremely hostile (pH 2 and metal-rich waters) environment of Rio Tinto (which is used as a model for the astrobiology of Mars). These algae are closely related to nonextreme lineages, suggesting that adaptation to Rio Tinto water (RTW) must occur rapidly. Fitness from both the microalga Dictyosphaerium chlorelloides and the cyanobacterium Microcystis aeruginosa was inhibited when they were cultured in RTW. After further incubation for several weeks, D. chlorelloides survived, as a result of the growth of a variant that was resistant to RTW, but RTW-resistant cells did not appear in M. aeruginosa. A Luria-Delbrück fluctuation test revealed that D. chlorelloides RTW-resistant cells arose randomly by rare spontaneous mutations before the RTW exposure (1.38 x 10(-6) mutants per cell division). The mutants with a diminished fitness are maintained in nonextreme waters as the result of a balance between new RTW-resistant cells arising by mutation and RTW-resistant mutants eliminated by natural selection (equilibrium at c. 15 RTW-resistant per 10(7) wild-type cells). Rapid adaptation of eukaryotic algae to RTW could be the result of selection of RTW-resistant mutants occurring spontaneously in nonextreme populations that arrived fortuitously at the river in the past, or in the present continuously
Beschreibung:Date Completed 23.08.2007
Date Revised 14.04.2021
published: Print
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/j.1469-8137.2007.02095.x