Cloning of Pinus sylvestris SCARECROW gene and its expression pattern in the pine root system, mycorrhiza and NPA-treated short roots

The SCARECROW (SCR) gene is central to root radial patterning. Its expression has not been investigated in conifers with morphologically different root types. Additional interest in SCR functions in the Pinus sylvestris root system comes from the effect of ectomycorrhiza formation on the short root...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 175(2007), 2 vom: 01., Seite 230-243
1. Verfasser: Laajanen, Kaisa (VerfasserIn)
Weitere Verfasser: Vuorinen, Irmeli, Salo, Vanamo, Juuti, Jarmo, Raudaskoski, Marjatta
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Phthalimides alpha-naphthylphthalamic acid 306R88V86P
Beschreibung
Zusammenfassung:The SCARECROW (SCR) gene is central to root radial patterning. Its expression has not been investigated in conifers with morphologically different root types. Additional interest in SCR functions in the Pinus sylvestris root system comes from the effect of ectomycorrhiza formation on the short root apical structure. Here, the P. sylvestris SCR gene (PsySCR) was cloned and its expression investigated by northern blot and in situ hybridization of primary, lateral and short roots and mycorrhiza. Short root dichotomization was induced by auxin transport inhibitor (N-1-naphthylphthalamic acid (NPA)). PsySCR has conserved GRAS family protein motifs at the C-terminus and a variable N-terminus. PsySCR expression occurred in young root tissue and mycorrhiza. In root sections the PsySCR signal runs through the tip in initials for stele and root cap column and becomes upwards-restricted to endodermis in all root types. The PsySCR expression pattern suggests for the first time a regulatory role for SCR in maintaining the endodermal characteristics and radial patterning of roots with open meristem organization. The specific PsySCR localization is also an excellent marker for investigation of the dichotomization process in short roots
Beschreibung:Date Completed 23.08.2007
Date Revised 14.04.2021
published: Print
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/j.1469-8137.2007.02102.x