Mechanism of CATA3 induction by cadmium in sunflower leaves
One of the main antioxidant enzymes, catalase (CAT, EC 1.11.1.6), is capable of catalyzing the dismutation of H(2)O(2). This enzyme is involved in signal transduction pathway in plants, controlling the cellular level of this reactive oxygen species. Four different genes, CATA1-CATA4, were identified...
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 45(2007), 8 vom: 01. Aug., Seite 589-95 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2007
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Antioxidants Fluoresceins Protein Isoforms Reactive Oxygen Species Cadmium 00BH33GNGH diacetyldichlorofluorescein 2044-85-1 mehr... |
Zusammenfassung: | One of the main antioxidant enzymes, catalase (CAT, EC 1.11.1.6), is capable of catalyzing the dismutation of H(2)O(2). This enzyme is involved in signal transduction pathway in plants, controlling the cellular level of this reactive oxygen species. Four different genes, CATA1-CATA4, were identified in Helianthus annuus L. cotyledons. Incubation of sunflower leaf discs with 300 and 500 microM CdCl(2) under light conditions increased CATA3 transcript level. However, it was not induced by Cd(2+) in etiolated plants. This Cd(2+)-induced increase was reverted by adding 10mM ascorbate. Treatments with 0.4 and 10 microM rose bengal (a generator of (1)O(2)) did not activate CATA3, but 10 microM methyl viologen (an enhancer of O(2)(-) production) and 10 mM H(2)O(2) increased its expression. In isolated chloroplasts, Cd(2+) and methyl viologen produced oxidation of the probe 2',7'-dichlorofluorescein diacetate indicating ROS formation. Besides, Cd(2+) treatment of leaf discs under light decreased CAT activity and increased carbonyl groups content, thus suggesting that enzyme inactivation could be due - in part - to a protein oxidation. These results indicate that light is involved in Cd(2+)-induced CATA3 enhancement, which leads to the synthesis of CAT isoforms less sensible to oxidation, and that chloroplast might be the main source of ROS responsible for this process |
---|---|
Beschreibung: | Date Completed 03.12.2007 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2690 |