Mechanism of CATA3 induction by cadmium in sunflower leaves

One of the main antioxidant enzymes, catalase (CAT, EC 1.11.1.6), is capable of catalyzing the dismutation of H(2)O(2). This enzyme is involved in signal transduction pathway in plants, controlling the cellular level of this reactive oxygen species. Four different genes, CATA1-CATA4, were identified...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 45(2007), 8 vom: 01. Aug., Seite 589-95
1. Verfasser: Azpilicueta, Claudia E (VerfasserIn)
Weitere Verfasser: Benavides, María P, Tomaro, María L, Gallego, Susana M
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Antioxidants Fluoresceins Protein Isoforms Reactive Oxygen Species Cadmium 00BH33GNGH diacetyldichlorofluorescein 2044-85-1 mehr... Carbon 7440-44-0 Hydrogen Peroxide BBX060AN9V Catalase EC 1.11.1.6 Paraquat PLG39H7695 Oxygen S88TT14065
Beschreibung
Zusammenfassung:One of the main antioxidant enzymes, catalase (CAT, EC 1.11.1.6), is capable of catalyzing the dismutation of H(2)O(2). This enzyme is involved in signal transduction pathway in plants, controlling the cellular level of this reactive oxygen species. Four different genes, CATA1-CATA4, were identified in Helianthus annuus L. cotyledons. Incubation of sunflower leaf discs with 300 and 500 microM CdCl(2) under light conditions increased CATA3 transcript level. However, it was not induced by Cd(2+) in etiolated plants. This Cd(2+)-induced increase was reverted by adding 10mM ascorbate. Treatments with 0.4 and 10 microM rose bengal (a generator of (1)O(2)) did not activate CATA3, but 10 microM methyl viologen (an enhancer of O(2)(-) production) and 10 mM H(2)O(2) increased its expression. In isolated chloroplasts, Cd(2+) and methyl viologen produced oxidation of the probe 2',7'-dichlorofluorescein diacetate indicating ROS formation. Besides, Cd(2+) treatment of leaf discs under light decreased CAT activity and increased carbonyl groups content, thus suggesting that enzyme inactivation could be due - in part - to a protein oxidation. These results indicate that light is involved in Cd(2+)-induced CATA3 enhancement, which leads to the synthesis of CAT isoforms less sensible to oxidation, and that chloroplast might be the main source of ROS responsible for this process
Beschreibung:Date Completed 03.12.2007
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690