Approximate labeling via graph cuts based on linear programming

A new framework is presented for both understanding and developing graph-cut-based combinatorial algorithms suitable for the approximate optimization of a very wide class of Markov Random Fields (MRFs) that are frequently encountered in computer vision. The proposed framework utilizes tools from the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 29(2007), 8 vom: 14. Aug., Seite 1436-53
1. Verfasser: Komodakis, Nikos (VerfasserIn)
Weitere Verfasser: Tziritas, Georgios
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM170879755
003 DE-627
005 20250208094109.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0570.xml 
035 |a (DE-627)NLM170879755 
035 |a (NLM)17568146 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Komodakis, Nikos  |e verfasserin  |4 aut 
245 1 0 |a Approximate labeling via graph cuts based on linear programming 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 30.08.2007 
500 |a Date Revised 14.06.2007 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A new framework is presented for both understanding and developing graph-cut-based combinatorial algorithms suitable for the approximate optimization of a very wide class of Markov Random Fields (MRFs) that are frequently encountered in computer vision. The proposed framework utilizes tools from the duality theory of linear programming in order to provide an alternative and more general view of state-of-the-art techniques like the \alpha-expansion algorithm, which is included merely as a special case. Moreover, contrary to \alpha-expansion, the derived algorithms generate solutions with guaranteed optimality properties for a much wider class of problems, for example, even for MRFs with nonmetric potentials. In addition, they are capable of providing per-instance suboptimality bounds in all occasions, including discrete MRFs with an arbitrary potential function. These bounds prove to be very tight in practice (that is, very close to 1), which means that the resulting solutions are almost optimal. Our algorithms' effectiveness is demonstrated by presenting experimental results on a variety of low-level vision tasks, such as stereo matching, image restoration, image completion, and optical flow estimation, as well as on synthetic problems 
650 4 |a Journal Article 
700 1 |a Tziritas, Georgios  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 29(2007), 8 vom: 14. Aug., Seite 1436-53  |w (DE-627)NLM098212257  |x 0162-8828  |7 nnns 
773 1 8 |g volume:29  |g year:2007  |g number:8  |g day:14  |g month:08  |g pages:1436-53 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 8  |b 14  |c 08  |h 1436-53