Deformation models for image recognition

We present the application of different nonlinear image deformation models to the task of image recognition. The deformation models are especially suited for local changes as they often occur in the presence of image object variability. We show that, among the discussed models, there is one approach...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 29(2007), 8 vom: 14. Aug., Seite 1422-35
1. Verfasser: Keysers, Daniel (VerfasserIn)
Weitere Verfasser: Deselaers, Thomas, Gollan, Christian, Ney, Hermann
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM170879747
003 DE-627
005 20250208094109.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0570.xml 
035 |a (DE-627)NLM170879747 
035 |a (NLM)17568145 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Keysers, Daniel  |e verfasserin  |4 aut 
245 1 0 |a Deformation models for image recognition 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 30.08.2007 
500 |a Date Revised 14.06.2007 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We present the application of different nonlinear image deformation models to the task of image recognition. The deformation models are especially suited for local changes as they often occur in the presence of image object variability. We show that, among the discussed models, there is one approach that combines simplicity of implementation, low-computational complexity, and highly competitive performance across various real-world image recognition tasks. We show experimentally that the model performs very well for four different handwritten digit recognition tasks and for the classification of medical images, thus showing high generalization capacity. In particular, an error rate of 0.54 percent on the MNIST benchmark is achieved, as well as the lowest reported error rate, specifically 12.6 percent, in the 2005 international ImageCLEF evaluation of medical image categorization 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Deselaers, Thomas  |e verfasserin  |4 aut 
700 1 |a Gollan, Christian  |e verfasserin  |4 aut 
700 1 |a Ney, Hermann  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 29(2007), 8 vom: 14. Aug., Seite 1422-35  |w (DE-627)NLM098212257  |x 0162-8828  |7 nnns 
773 1 8 |g volume:29  |g year:2007  |g number:8  |g day:14  |g month:08  |g pages:1422-35 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 8  |b 14  |c 08  |h 1422-35