Biometric recognition using 3D ear shape

Previous works have shown that the ear is a promising candidate for biometric identification. However, in prior work, the preprocessing of ear images has had manual steps and algorithms have not necessarily handled problems caused by hair and earrings. We present a complete system for ear biometrics...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 29(2007), 8 vom: 14. Aug., Seite 1297-308
1. Verfasser: Yan, Ping (VerfasserIn)
Weitere Verfasser: Bowyer, Kevin W
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM17087964X
003 DE-627
005 20231223124457.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0570.xml 
035 |a (DE-627)NLM17087964X 
035 |a (NLM)17568136 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yan, Ping  |e verfasserin  |4 aut 
245 1 0 |a Biometric recognition using 3D ear shape 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 30.08.2007 
500 |a Date Revised 14.06.2007 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Previous works have shown that the ear is a promising candidate for biometric identification. However, in prior work, the preprocessing of ear images has had manual steps and algorithms have not necessarily handled problems caused by hair and earrings. We present a complete system for ear biometrics, including automated segmentation of the ear in a profile view image and 3D shape matching for recognition. We evaluated this system with the largest experimental study to date in ear biometrics, achieving a rank-one recognition rate of 97.8 percent for an identification scenario and an equal error rate of 1.2 percent for a verification scenario on a database of 415 subjects and 1,386 total probes 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Bowyer, Kevin W  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 29(2007), 8 vom: 14. Aug., Seite 1297-308  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:29  |g year:2007  |g number:8  |g day:14  |g month:08  |g pages:1297-308 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 8  |b 14  |c 08  |h 1297-308