On the structure of the inverse kinematics map of a fragment of protein backbone

Loop closure in proteins requires computing the values of the inverse kinematics (IK) map for a backbone fragment with 2n > or = 6 torsional degrees of freedom (dofs). It occurs in a variety of contexts, e.g., structure determination from electron-density maps, loop insertion in homology-based st...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 29(2008), 1 vom: 15. Jan., Seite 50-68
1. Verfasser: Milgram, R J (VerfasserIn)
Weitere Verfasser: Liu, Guanfeng, Latombe, J C
Format: Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Proteins
LEADER 01000caa a22002652 4500
001 NLM17063387X
003 DE-627
005 20250208085042.0
007 tu
008 231223s2008 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0569.xml 
035 |a (DE-627)NLM17063387X 
035 |a (NLM)17542001 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Milgram, R J  |e verfasserin  |4 aut 
245 1 0 |a On the structure of the inverse kinematics map of a fragment of protein backbone 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 12.03.2008 
500 |a Date Revised 21.11.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Loop closure in proteins requires computing the values of the inverse kinematics (IK) map for a backbone fragment with 2n > or = 6 torsional degrees of freedom (dofs). It occurs in a variety of contexts, e.g., structure determination from electron-density maps, loop insertion in homology-based structure prediction, backbone tweaking for protein energy minimization, and the study of protein mobility in folded states. The first part of this paper analyzes the global structure of the IK map for a fragment of protein backbone with 6 torsional dofs for a slightly idealized kinematic model, called the canonical model. This model, which assumes that every two consecutive torsional bonds C(alpha)--C and N--C(alpha) are exactly parallel, makes it possible to separately compute the inverse orientation map and the inverse position map. The singularities of both maps and their images, the critical sets, respectively, decompose SO(3) x R(3) into open regions where the number of IK solutions is constant. This decomposition leads to a constructive proof of the existence of a region in R(3) x SO(3) where the IK of the 6-dof fragment attains its theoretical maximum of 16 solutions. The second part of this paper extends this analysis to study fragments with more than 6 torsional dofs. It describes an efficient recursive algorithm to sample IK solutions for such fragments, by identifying the feasible range of each successive torsional dof. A numerical homotopy algorithm is then used to deform the IK solutions for a canonical fragment into solutions for a noncanonical fragment. Computational results for fragments ranging from 8 to 30 dofs are presented 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 7 |a Proteins  |2 NLM 
700 1 |a Liu, Guanfeng  |e verfasserin  |4 aut 
700 1 |a Latombe, J C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 29(2008), 1 vom: 15. Jan., Seite 50-68  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:29  |g year:2008  |g number:1  |g day:15  |g month:01  |g pages:50-68 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2008  |e 1  |b 15  |c 01  |h 50-68