Algorithmic differentiation : application to variational problems in computer vision

Many vision problems can be formulated as minimization of appropriate energy functionals. These energy functionals are usually minimized, based on the calculus of variations (Euler-Lagrange equation). Once the Euler-Lagrange equation has been determined, it needs to be discretized in order to implem...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 29(2007), 7 vom: 06. Juli, Seite 1180-93
1. Verfasser: Pock, Thomas (VerfasserIn)
Weitere Verfasser: Pock, Michael, Bischof, Horst
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM170233014
003 DE-627
005 20231223123049.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0568.xml 
035 |a (DE-627)NLM170233014 
035 |a (NLM)17496376 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pock, Thomas  |e verfasserin  |4 aut 
245 1 0 |a Algorithmic differentiation  |b application to variational problems in computer vision 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 18.07.2007 
500 |a Date Revised 14.05.2007 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Many vision problems can be formulated as minimization of appropriate energy functionals. These energy functionals are usually minimized, based on the calculus of variations (Euler-Lagrange equation). Once the Euler-Lagrange equation has been determined, it needs to be discretized in order to implement it on a digital computer. This is not a trivial task and, is moreover, error-prone. In this paper, we propose a flexible alternative. We discretize the energy functional and, subsequently, apply the mathematical concept of algorithmic differentiation to directly derive algorithms that implement the energy functional's derivatives. This approach has several advantages: First, the computed derivatives are exact with respect to the implementation of the energy functional. Second, it is basically straightforward to compute second-order derivatives and, thus, the Hessian matrix of the energy functional. Third, algorithmic differentiation is a process which can be automated. We demonstrate this novel approach on three representative vision problems (namely, denoising, segmentation, and stereo) and show that state-of-the-art results are obtained with little effort 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Pock, Michael  |e verfasserin  |4 aut 
700 1 |a Bischof, Horst  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 29(2007), 7 vom: 06. Juli, Seite 1180-93  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:29  |g year:2007  |g number:7  |g day:06  |g month:07  |g pages:1180-93 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 7  |b 06  |c 07  |h 1180-93