Region-level motion-based background modeling and subtraction using MRFs

This paper presents a new approach to automatic segmentation of foreground objects from an image sequence by integrating techniques of background subtraction and motion-based foreground segmentation. First, a region-based motion segmentation algorithm is proposed to obtain a set of motion-coherence...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 16(2007), 5 vom: 28. Mai, Seite 1446-56
1. Verfasser: Huang, Shih-Shinh (VerfasserIn)
Weitere Verfasser: Fu, Li-Chen, Hsiao, Pei-Yung
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM170187004
003 DE-627
005 20231223122945.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0567.xml 
035 |a (DE-627)NLM170187004 
035 |a (NLM)17491472 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Shih-Shinh  |e verfasserin  |4 aut 
245 1 0 |a Region-level motion-based background modeling and subtraction using MRFs 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 07.06.2007 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper presents a new approach to automatic segmentation of foreground objects from an image sequence by integrating techniques of background subtraction and motion-based foreground segmentation. First, a region-based motion segmentation algorithm is proposed to obtain a set of motion-coherence regions and the correspondence among regions at different time instants. Next, we formulate the classification problem as a graph labeling over a region adjacency graph based on Markov random fields (MRFs) statistical framework. A background model representing the background scene is built and then is used to model a likelihood energy. Besides the background model, a temporal coherence is also maintained by modeling it as the prior energy. On the other hand, color distributions of two neighboring regions are taken into consideration to impose spatial coherence. Then, the a priori energy of MRFs takes both spatial and temporal coherence into account to maintain the continuity of our segmentation. Finally, a labeling is obtained by maximizing the a posteriori energy of the MRFs. Under such formulation, we integrate two different kinds of techniques in an elegant way to make the foreground detection more accurate. Experimental results for several video sequences are provided to demonstrate the effectiveness of the proposed approach 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Fu, Li-Chen  |e verfasserin  |4 aut 
700 1 |a Hsiao, Pei-Yung  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 16(2007), 5 vom: 28. Mai, Seite 1446-56  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:16  |g year:2007  |g number:5  |g day:28  |g month:05  |g pages:1446-56 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 16  |j 2007  |e 5  |b 28  |c 05  |h 1446-56