A generic framework for tracking using particle filter with dynamic shape prior

Tracking deforming objects involves estimating the global motion of the object and its local deformations as functions of time. Tracking algorithms using Kalman filters or particle filters (PFs) have been proposed for tracking such objects, but these have limitations due to the lack of dynamic shape...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 16(2007), 5 vom: 28. Mai, Seite 1370-82
1. Verfasser: Rathi, Yogesh (VerfasserIn)
Weitere Verfasser: Vaswani, Namrata, Tannenbaum, Allen
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM170186954
003 DE-627
005 20231223122945.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0567.xml 
035 |a (DE-627)NLM170186954 
035 |a (NLM)17491466 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rathi, Yogesh  |e verfasserin  |4 aut 
245 1 2 |a A generic framework for tracking using particle filter with dynamic shape prior 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 07.06.2007 
500 |a Date Revised 26.10.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Tracking deforming objects involves estimating the global motion of the object and its local deformations as functions of time. Tracking algorithms using Kalman filters or particle filters (PFs) have been proposed for tracking such objects, but these have limitations due to the lack of dynamic shape information. In this paper, we propose a novel method based on employing a locally linear embedding in order to incorporate dynamic shape information into the particle filtering framework for tracking highly deformable objects in the presence of noise and clutter. The PF also models image statistics such as mean and variance of the given data which can be useful in obtaining proper separation of object and background 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Vaswani, Namrata  |e verfasserin  |4 aut 
700 1 |a Tannenbaum, Allen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 16(2007), 5 vom: 28. Mai, Seite 1370-82  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:16  |g year:2007  |g number:5  |g day:28  |g month:05  |g pages:1370-82 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 16  |j 2007  |e 5  |b 28  |c 05  |h 1370-82