Computational chemistry comparison of stable/nonstable protein mutants classification models based on 3D and topological indices

Copyright 2007 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 28(2007), 12 vom: 05. Sept., Seite 1990-5
1. Verfasser: González-Díaz, Humberto (VerfasserIn)
Weitere Verfasser: Pérez-Castillo, Yunierkis, Podda, Gianni, Uriarte, Eugenio
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Comparative Study Journal Article Proteins
LEADER 01000naa a22002652 4500
001 NLM16981887X
003 DE-627
005 20231223122146.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0566.xml 
035 |a (DE-627)NLM16981887X 
035 |a (NLM)17450569 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a González-Díaz, Humberto  |e verfasserin  |4 aut 
245 1 0 |a Computational chemistry comparison of stable/nonstable protein mutants classification models based on 3D and topological indices 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 05.09.2007 
500 |a Date Revised 28.06.2007 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Copyright 2007 Wiley Periodicals, Inc. 
520 |a In principle, there are different protein structural parameters that can be used in computational chemistry studies to classify protein mutants according to thermal stability including: sequence, connectivity, and 3D descriptors. Connectivity parameters (called topological indices, TIs) are simpler than 3D parameters being then less computationally expensive. However, TIs ignore important aspects of protein structure and hence are expected to be inaccurate. In any case, a comparison of 3D and TIs has not been reported with respect to the power of discrimination of proteins according to stability. In this study, we compare both classes of indices in this sense by the first time. The best model found, based on 3D spectral moments correctly classified 507 out of 525 (96.6%) proteins while TIs model correctly classified 404 out of 525 (77.0%) proteins. We have shown that, in fact, 3D descriptor models gave more accurate results than TIs but interestingly, TIs give acceptable results in a timely way in spite of their simplicity 
650 4 |a Comparative Study 
650 4 |a Journal Article 
650 7 |a Proteins  |2 NLM 
700 1 |a Pérez-Castillo, Yunierkis  |e verfasserin  |4 aut 
700 1 |a Podda, Gianni  |e verfasserin  |4 aut 
700 1 |a Uriarte, Eugenio  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 28(2007), 12 vom: 05. Sept., Seite 1990-5  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:28  |g year:2007  |g number:12  |g day:05  |g month:09  |g pages:1990-5 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2007  |e 12  |b 05  |c 09  |h 1990-5