Oxidation kinetics of hydrogenated amorphous carbon (a-CH(x)) overcoats for magnetic data storage media

The oxidation kinetics of a-CHx overcoats during exposure to oxygen and water vapor have been measured using X-ray photoemission spectroscopy (XPS) in an apparatus that allows oxidation and analysis of freshly deposited a-CHx overcoats without prior exposure of the overcoats to air. The uptake of ox...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 23(2007), 10 vom: 08. Mai, Seite 5485-90
1. Verfasser: Yun, Yang (VerfasserIn)
Weitere Verfasser: Ma, Xiaoding, Gui, Jing, Broitman, Esteban, Gellman, Andrew J
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The oxidation kinetics of a-CHx overcoats during exposure to oxygen and water vapor have been measured using X-ray photoemission spectroscopy (XPS) in an apparatus that allows oxidation and analysis of freshly deposited a-CHx overcoats without prior exposure of the overcoats to air. The uptake of oxygen on the surfaces of the a-CHx overcoats has been measured at O2 and H2O pressures in the range 10(-7)-10(-3) Torr at room temperature. The uptake of oxygen during O2 exposures on the order of 10(7) Langmuirs leads to saturation of the a-CHx overcoat surfaces at oxidation levels on the order of 20%. This indicates that the surfaces of a-CHx overcoats are relatively inert to oxidation in the sense that the dissociative sticking coefficient of O2 is approximately 10(-6). Oxygen uptake during exposure to H2O vapor is similar to the uptake during exposure to O2 gas. Although the surfaces of the a-CHx overcoats are quite inhomogeneous, it has been possible to model the uptake of oxygen on their surfaces using a fairly simple Langmuir-Hinshelwood mechanism. Interestingly, the saturation coverage of oxygen during exposure to air at atmospheric pressure is approximately 6%, significantly lower than that obtained during low-pressure exposure to O2 gas or H2O vapor
Beschreibung:Date Completed 27.06.2007
Date Revised 01.05.2007
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827