|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM169579476 |
003 |
DE-627 |
005 |
20231223121632.0 |
007 |
tu |
008 |
231223s2007 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0565.xml
|
035 |
|
|
|a (DE-627)NLM169579476
|
035 |
|
|
|a (NLM)17425342
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Sanjuan, S
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Synthesis and swelling behavior of pH-responsive polybase brushes
|
264 |
|
1 |
|c 2007
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 27.06.2007
|
500 |
|
|
|a Date Revised 21.11.2013
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a We synthesize polybase brushes and investigate their swelling behavior. Poly(2-(dimethylamino)ethyl methacrylate)) (PDMAEMA) brushes are prepared by the "grafting from" method using surface-initiated Atom Transfer Radical Polymerization to obtain dense brushes with relatively monodisperse chains (PDI = 1.35). In situ quaternization reaction can be performed to obtain poly(2-(trimethylamino)ethyl methacrylate)) (PTMAEMA) brushes. We determine the swollen thickness of the brushes using ellipsometry and neutron reflectivity techniques. Brushes are submitted to different solvent conditions to be investigated as neutral brushes and weak and strong polyelectrolyte brushes. The swelling of the brushes is systematically compared to scaling models. It should be pointed out that the scaling analysis of different types of brushes (neutral polymer and weak and strong polyelectrolyte brushes) is performed with identical samples. The scaling behavior of the PDMAEMA brush in methanol and the PTMAEMA brush in water is in good agreement with the predicted scaling laws for a neutral polymer brush in a good solvent and a polyelectrolyte brush in the osmotic regime. The salt-induced contraction of the quaternized brush is observed for high salt concentration, in agreement with the predicted transition between the regimes of the osmotic brush and the salted brush. From the crossover concentration, we calculate the effective charge ratio of the brush following the Manning counterion condensation. We also use PDMAEMA brushes as pH-responsive polybase brushes. The swelling behavior of the polybase brush is intermediate with respect to the behavior of the neutral polymer brush in a good solvent and the behavior of the quenched polyelectrolyte brush, as expected. The effective charge ratio of the PDMAEMA brush is determined as a function of pH using the scaling law of the polyelectrolyte brush in the osmotic regime
|
650 |
|
4 |
|a Comparative Study
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a Methacrylates
|2 NLM
|
650 |
|
7 |
|a Nylons
|2 NLM
|
650 |
|
7 |
|a poly(2-(dimethylamino)ethyl methacrylate)
|2 NLM
|
650 |
|
7 |
|a Water
|2 NLM
|
650 |
|
7 |
|a 059QF0KO0R
|2 NLM
|
650 |
|
7 |
|a Methanol
|2 NLM
|
650 |
|
7 |
|a Y4S76JWI15
|2 NLM
|
700 |
1 |
|
|a Perrin, P
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pantoustier, N
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tran, Y
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 23(2007), 10 vom: 08. Mai, Seite 5769-78
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:23
|g year:2007
|g number:10
|g day:08
|g month:05
|g pages:5769-78
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 23
|j 2007
|e 10
|b 08
|c 05
|h 5769-78
|