A coupled statistical model for face shape recovery from brightness images

We focus on the problem of developing a coupled statistical model that can be used to recover facial shape from brightness images of faces. We study three alternative representations for facial shape. These are the surface height function, the surface gradient, and a Fourier basis representation. We...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 16(2007), 4 vom: 19. Apr., Seite 1139-51
1. Verfasser: Castelán, Mario (VerfasserIn)
Weitere Verfasser: Smith, William A P, Hancock, Edwin R
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM169393194
003 DE-627
005 20231223121238.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0565.xml 
035 |a (DE-627)NLM169393194 
035 |a (NLM)17405444 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Castelán, Mario  |e verfasserin  |4 aut 
245 1 2 |a A coupled statistical model for face shape recovery from brightness images 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 24.04.2007 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We focus on the problem of developing a coupled statistical model that can be used to recover facial shape from brightness images of faces. We study three alternative representations for facial shape. These are the surface height function, the surface gradient, and a Fourier basis representation. We jointly capture variations in intensity and the surface shape representations using a coupled statistical model. The model is constructed by performing principal components analysis on sets of parameters describing the contents of the intensity images and the facial shape representations. By fitting the coupled model to intensity data, facial shape is implicitly recovered from the shape parameters. Experiments show that the coupled model is able to generate accurate shape from out-of-training-sample intensity images 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Smith, William A P  |e verfasserin  |4 aut 
700 1 |a Hancock, Edwin R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 16(2007), 4 vom: 19. Apr., Seite 1139-51  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:16  |g year:2007  |g number:4  |g day:19  |g month:04  |g pages:1139-51 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 16  |j 2007  |e 4  |b 19  |c 04  |h 1139-51