|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM16939316X |
003 |
DE-627 |
005 |
20231223121238.0 |
007 |
tu |
008 |
231223s2007 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0565.xml
|
035 |
|
|
|a (DE-627)NLM16939316X
|
035 |
|
|
|a (NLM)17405441
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Dong, Yiqiu
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A detection statistic for random-valued impulse noise
|
264 |
|
1 |
|c 2007
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 24.04.2007
|
500 |
|
|
|a Date Revised 10.12.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a This paper proposes an image statistic for detecting random-valued impulse noise. By this statistic, we can identify most of the noisy pixels in the corrupted images. Combining it with an edge-preserving regularization, we obtain a powerful two-stage method for denoising random-valued impulse noise, even for noise levels as high as 60%. Simulation results show that our method is significantly better than a number of existing techniques in terms of image restoration and noise detection
|
650 |
|
4 |
|a Evaluation Study
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Chan, Raymond H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Shufang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 16(2007), 4 vom: 19. Apr., Seite 1112-20
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:16
|g year:2007
|g number:4
|g day:19
|g month:04
|g pages:1112-20
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 16
|j 2007
|e 4
|b 19
|c 04
|h 1112-20
|