Nanostructured Pt/GC model electrodes prepared by the deposition of metal-salt-loaded micelles
Novel, nanostructured, carbon-supported Pt model electrodes with homogeneously distributed Pt nanoparticles of uniform size were fabricated and analyzed with respect to their electrochemical properties. For this purpose, Pt-salt-loaded micelles were deposited on a glassy carbon substrate and subsequ...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1991. - 23(2007), 10 vom: 08. Mai, Seite 5795-801 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2007
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Novel, nanostructured, carbon-supported Pt model electrodes with homogeneously distributed Pt nanoparticles of uniform size were fabricated and analyzed with respect to their electrochemical properties. For this purpose, Pt-salt-loaded micelles were deposited on a glassy carbon substrate and subsequently exposed to an oxygen plasma and a H2 atmosphere for removal of the polymer carriers and reduction of the Pt salt. The morphology of the resulting nanoparticles and their electrochemical/electrocatalytic properties were characterized by high-resolution scanning electron microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, and differential electrochemical mass spectrometry for CO electrooxidation. The data demonstrate that this method is generally suited to the production of nanostructured model electrodes with well-defined and independently adjustable particle size and interparticle distance distributions, which are specifically suited for quantitative studies of transport processes in electrocatalytic reactions |
---|---|
Beschreibung: | Date Completed 27.06.2007 Date Revised 01.05.2007 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 0743-7463 |