Combining Monte Carlo and mean-field-like methods for inference in hidden Markov random fields

Issues involving missing data are typical settings where exact inference is not tractable as soon as nontrivial interactions occur between the missing variables. Approximations are required, and most of them are based either on simulation methods or on deterministic variational methods. While variat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 16(2007), 3 vom: 24. März, Seite 824-37
1. Verfasser: Forbes, Florence (VerfasserIn)
Weitere Verfasser: Fort, Gersende
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM168952807
003 DE-627
005 20231223120250.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0563.xml 
035 |a (DE-627)NLM168952807 
035 |a (NLM)17357740 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Forbes, Florence  |e verfasserin  |4 aut 
245 1 0 |a Combining Monte Carlo and mean-field-like methods for inference in hidden Markov random fields 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 03.07.2007 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Issues involving missing data are typical settings where exact inference is not tractable as soon as nontrivial interactions occur between the missing variables. Approximations are required, and most of them are based either on simulation methods or on deterministic variational methods. While variational methods provide fast and reasonable approximate estimates in many scenarios, simulation methods offer more consideration of important theoretical issues such as accuracy of the approximation and convergence of the algorithms but at a much higher computational cost. In this work, we propose a new class of algorithms that combine the main features and advantages of both simulation and deterministic methods and consider applications to inference in hidden Markov random fields (HMRFs). These algorithms can be viewed as stochastic perturbations of variational expectation maximization (VEM) algorithms, which are not tractable for HMRF. We focus more specifically on one of these perturbations and we prove their (almost sure) convergence to the same limit set as the limit set of VEM. In addition, experiments on synthetic and real-world images show that the algorithm performance is very close and sometimes better than that of other existing simulation-based and variational EM-like algorithms 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Fort, Gersende  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 16(2007), 3 vom: 24. März, Seite 824-37  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:16  |g year:2007  |g number:3  |g day:24  |g month:03  |g pages:824-37 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 16  |j 2007  |e 3  |b 24  |c 03  |h 824-37