Global regularizing flows with topology preservation for active contours and polygons

Active contour and active polygon models have been used widely for image segmentation. In some applications, the topology of the object(s) to be detected from an image is known a priori, despite a complex unknown geometry, and it is important that the active contour or polygon maintain the desired t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 16(2007), 3 vom: 24. März, Seite 803-12
1. Verfasser: Sundaramoorthi, Ganesh (VerfasserIn)
Weitere Verfasser: Yezzi, Anthony
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article
LEADER 01000naa a22002652 4500
001 NLM168952785
003 DE-627
005 20231223120250.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0563.xml 
035 |a (DE-627)NLM168952785 
035 |a (NLM)17357738 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sundaramoorthi, Ganesh  |e verfasserin  |4 aut 
245 1 0 |a Global regularizing flows with topology preservation for active contours and polygons 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 03.07.2007 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Active contour and active polygon models have been used widely for image segmentation. In some applications, the topology of the object(s) to be detected from an image is known a priori, despite a complex unknown geometry, and it is important that the active contour or polygon maintain the desired topology. In this work, we construct a novel geometric flow that can be added to image-based evolutions of active contours and polygons in order to preserve the topology of the initial contour or polygon. We emphasize that, unlike other methods for topology preservation, the proposed geometric flow continually adjusts the geometry of the original evolution in a gradual and graceful manner so as to prevent a topology change long before the curve or polygon becomes close to topology change. The flow also serves as a global regularity term for the evolving contour, and has smoothness properties similar to curvature flow. These properties of gradually adjusting the original flow and global regularization prevent geometrical inaccuracies common with simple discrete topology preservation schemes. The proposed topology preserving geometric flow is the gradient flow arising from an energy that is based on electrostatic principles. The evolution of a single point on the contour depends on all other points of the contour, which is different from traditional curve evolutions in the computer vision literature 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
700 1 |a Yezzi, Anthony  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 16(2007), 3 vom: 24. März, Seite 803-12  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:16  |g year:2007  |g number:3  |g day:24  |g month:03  |g pages:803-12 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 16  |j 2007  |e 3  |b 24  |c 03  |h 803-12