An efficient Earth Mover's Distance algorithm for robust histogram comparison

We propose EMD-L1: a fast and exact algorithm for computing the Earth Mover's Distance (EMD) between a pair of histograms. The efficiency of the new algorithm enables its application to problems that were previously prohibitive due to high time complexities. The proposed EMD-L1 significantly si...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 29(2007), 5 vom: 13. Mai, Seite 840-53
1. Verfasser: Ling, Haibin (VerfasserIn)
Weitere Verfasser: Okada, Kazunori
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Evaluation Study Journal Article
LEADER 01000caa a22002652 4500
001 NLM168937875
003 DE-627
005 20250208025642.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0563.xml 
035 |a (DE-627)NLM168937875 
035 |a (NLM)17356203 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ling, Haibin  |e verfasserin  |4 aut 
245 1 3 |a An efficient Earth Mover's Distance algorithm for robust histogram comparison 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 22.05.2007 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We propose EMD-L1: a fast and exact algorithm for computing the Earth Mover's Distance (EMD) between a pair of histograms. The efficiency of the new algorithm enables its application to problems that were previously prohibitive due to high time complexities. The proposed EMD-L1 significantly simplifies the original linear programming formulation of EMD. Exploiting the L1 metric structure, the number of unknown variables in EMD-L1 is reduced to O(N) from O(N2) of the original EMD for a histogram with N bins. In addition, the number of constraints is reduced by half and the objective function of the linear program is simplified. Formally, without any approximation, we prove that the EMD-L1 formulation is equivalent to the original EMD with a L1 ground distance. To perform the EMD-L1 computation, we propose an efficient tree-based algorithm, Tree-EMD. Tree-EMD exploits the fact that a basic feasible solution of the simplex algorithm-based solver forms a spanning tree when we interpret EMD-L1 as a network flow optimization problem. We empirically show that this new algorithm has an average time complexity of O(N2), which significantly improves the best reported supercubic complexity of the original EMD. The accuracy of the proposed methods is evaluated by experiments for two computation-intensive problems: shape recognition and interest point matching using multidimensional histogram-based local features. For shape recognition, EMD-L1 is applied to compare shape contexts on the widely tested MPEG7 shape data set, as well as an articulated shape data set. For interest point matching, SIFT, shape context and spin image are tested on both synthetic and real image pairs with large geometrical deformation, illumination change, and heavy intensity noise. The results demonstrate that our EMD-L1-based solutions outperform previously reported state-of-the-art features and distance measures in solving the two tasks 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
700 1 |a Okada, Kazunori  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 29(2007), 5 vom: 13. Mai, Seite 840-53  |w (DE-627)NLM098212257  |x 0162-8828  |7 nnns 
773 1 8 |g volume:29  |g year:2007  |g number:5  |g day:13  |g month:05  |g pages:840-53 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 5  |b 13  |c 05  |h 840-53