Robust object matching for persistent tracking with heterogeneous features

This paper addresses the problem of matching vehicles across multiple sightings under variations in illumination and camera poses. Since multiple observations of a vehicle are separated in large temporal and/or spatial gaps, thus prohibiting the use of standard frame-to-frame data association, we em...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 29(2007), 5 vom: 13. Mai, Seite 824-39
1. Verfasser: Guo, Yanlin (VerfasserIn)
Weitere Verfasser: Hsu, Steve, Sawhney, Harpreet S, Kumar, Rakesh, Shan, Ying
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM168937867
003 DE-627
005 20231223120230.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0563.xml 
035 |a (DE-627)NLM168937867 
035 |a (NLM)17356202 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guo, Yanlin  |e verfasserin  |4 aut 
245 1 0 |a Robust object matching for persistent tracking with heterogeneous features 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 22.05.2007 
500 |a Date Revised 14.03.2007 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper addresses the problem of matching vehicles across multiple sightings under variations in illumination and camera poses. Since multiple observations of a vehicle are separated in large temporal and/or spatial gaps, thus prohibiting the use of standard frame-to-frame data association, we employ features extracted over a sequence during one time interval as a vehicle fingerprint that is used to compute the likelihood that two or more sequence observations are from the same or different vehicles. Furthermore, since our domain is aerial video tracking, in order to deal with poor image quality and large resolution and quality variations, our approach employs robust alignment and match measures for different stages of vehicle matching. Most notably, we employ a heterogeneous collection of features such as lines, points, and regions in an integrated matching framework. Heterogeneous features are shown to be important. Line and point features provide accurate localization and are employed for robust alignment across disparate views. The challenges of change in pose, aspect, and appearances across two disparate observations are handled by combining a novel feature-based quasi-rigid alignment with flexible matching between two or more sequences. However, since lines and points are relatively sparse, they are not adequate to delineate the object and provide a comprehensive matching set that covers the complete object. Region features provide a high degree of coverage and are employed for continuous frames to provide a delineation of the vehicle region for subsequent generation of a match measure. Our approach reliably delineates objects by representing regions as robust blob features and matching multiple regions to multiple regions using Earth Mover's Distance (EMD). Extensive experimentation under a variety of real-world scenarios and over hundreds of thousands of Confirmatory Identification (CID) trails has demonstrated about 95 percent accuracy in vehicle reacquisition with both visible and Infrared (IR) imaging cameras 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Hsu, Steve  |e verfasserin  |4 aut 
700 1 |a Sawhney, Harpreet S  |e verfasserin  |4 aut 
700 1 |a Kumar, Rakesh  |e verfasserin  |4 aut 
700 1 |a Shan, Ying  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 29(2007), 5 vom: 13. Mai, Seite 824-39  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:29  |g year:2007  |g number:5  |g day:13  |g month:05  |g pages:824-39 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 5  |b 13  |c 05  |h 824-39