Cell adhesion and growth to Peptide-patterned supported lipid membranes

Lipid vesicles displaying RGD peptide amphiphiles were fused with glass coverslips to control the ability of these surfaces to support cell adhesion and growth. Cell adhesion was prevented on phosphatidylcholine bilayers in the absence of RGD, whereas cells adhered and grew in the presence of access...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 23(2007), 7 vom: 27. März, Seite 3849-56
1. Verfasser: Stroumpoulis, Dimitrios (VerfasserIn)
Weitere Verfasser: Zhang, Haining, Rubalcava, Leticia, Gliem, Jill, Tirrell, Matthew
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Lipid Bilayers Oligopeptides RGD891
Beschreibung
Zusammenfassung:Lipid vesicles displaying RGD peptide amphiphiles were fused with glass coverslips to control the ability of these surfaces to support cell adhesion and growth. Cell adhesion was prevented on phosphatidylcholine bilayers in the absence of RGD, whereas cells adhered and grew in the presence of accessible RGD amphiphiles. This specific interaction between cells and RGD peptides was further explored in a concentration-dependent fashion by creating surface composition arrays using microfluidics. For the range of concentrations studied adhesion and growth were favored by increased peptide concentration, but this concentration dependence was found to diminish in the higher concentration regions of the array. Developing peptide composition gradients in a membrane environment is demonstrated as an effective method to screen biological probes for cell adhesion and growth
Beschreibung:Date Completed 15.05.2007
Date Revised 20.03.2007
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827