|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM168674416 |
003 |
DE-627 |
005 |
20250208015947.0 |
007 |
tu |
008 |
231223s2007 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0562.xml
|
035 |
|
|
|a (DE-627)NLM168674416
|
035 |
|
|
|a (NLM)17328327
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Dahl, Jeremy J
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A parallel tracking method for acoustic radiation force impulse imaging
|
264 |
|
1 |
|c 2007
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 27.03.2007
|
500 |
|
|
|a Date Revised 10.12.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Radiation force-based techniques have been developed by several groups for imaging the mechanical properties of tissue. Acoustic Radiation Force Impulse (ARFI) imaging is one such method that uses commercially available scanners to generate localized radiation forces in tissue. The response of the tissue to the radiation force is determined using conventional B-mode imaging pulses to track micron-scale displacements in tissue. Current research in ARFI imaging is focused on producing real-time images of tissue displacements and related mechanical properties. Obstacles to producing a real-time ARFI imaging modality include data acquisition, processing power, data transfer rates, heating of the transducer, and patient safety concerns. We propose a parallel receive beamforming technique to reduce transducer heating and patient acoustic exposure, and to facilitate data acquisition for real-time ARFI imaging. Custom beam sequencing was used with a commercially available scanner to track tissue displacements with parallel-receive beamforming in tissue-mimicking phantoms. Using simulations, the effects of material properties on parallel tracking are observed. Transducer and tissue heating for parallel tracking are compared to standard ARFI beam sequencing. The effects of tracking beam position and size of the tracked region are also discussed in relation to the size and temporal response of the region of applied force, and the impact on ARFI image contrast and signal-to-noise ratio are quantified
|
650 |
|
4 |
|a Evaluation Study
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, N.I.H., Extramural
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Pinton, Gianmarco F
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Palmeri, Mark L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Agrawal, Vineet
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nightingale, Kathryn R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Trahey, Gregg E
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on ultrasonics, ferroelectrics, and frequency control
|d 1999
|g 54(2007), 2 vom: 01. Feb., Seite 301-12
|w (DE-627)NLM098181017
|x 0885-3010
|7 nnns
|
773 |
1 |
8 |
|g volume:54
|g year:2007
|g number:2
|g day:01
|g month:02
|g pages:301-12
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_24
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 54
|j 2007
|e 2
|b 01
|c 02
|h 301-12
|