Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites
We report an approach to the development of advanced structural composites based on engineered multiscale carbon nanotube-carbon fiber reinforcement. Electrophoresis was utilized for the selective deposition of multi- and single-walled carbon nanotubes (CNTs) on woven carbon fabric. The CNT-coated c...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 23(2007), 7 vom: 27. März, Seite 3970-4 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2007
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | We report an approach to the development of advanced structural composites based on engineered multiscale carbon nanotube-carbon fiber reinforcement. Electrophoresis was utilized for the selective deposition of multi- and single-walled carbon nanotubes (CNTs) on woven carbon fabric. The CNT-coated carbon fabric panels were subsequently infiltrated with epoxy resin using vacuum-assisted resin transfer molding (VARTM) to fabricate multiscale hybrid composites in which the nanotubes were completely integrated into the fiber bundles and reinforced the matrix-rich regions. The carbon nanotube/carbon fabric/epoxy composites showed approximately 30% enhancement of the interlaminar shear strength as compared to that of carbon fiber/epoxy composites without carbon nanotubes and demonstrate significantly improved out-of-plane electrical conductivity |
---|---|
Beschreibung: | Date Completed 15.05.2007 Date Revised 20.03.2007 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |