How Wenzel and cassie were wrong
We argue using experimental data that contact lines and not contact areas are important in determining wettability. Three types of two-component surfaces were prepared that contain "spots" in a surrounding field: a hydrophilic spot in a hydrophobic field, a rough spot in a smooth field, an...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 23(2007), 7 vom: 27. März, Seite 3762-5 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2007
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | We argue using experimental data that contact lines and not contact areas are important in determining wettability. Three types of two-component surfaces were prepared that contain "spots" in a surrounding field: a hydrophilic spot in a hydrophobic field, a rough spot in a smooth field, and a smooth spot in a rough field. Water contact angles were measured within the spots and with the spot confined to within the contact line of the sessile drop. Spot diameter and contact line diameter were varied. All of the data indicate that contact angle behavior (advancing, receding, and hysteresis) is determined by interactions of the liquid and the solid at the three-phase contact line alone and that the interfacial area within the contact perimeter is irrelevant. The point is made that Wenzel's and Cassie's equations are valid only to the extent that the structure of the contact area reflects the ground state energies of contact lines and the transition states between them |
---|---|
Beschreibung: | Date Completed 15.05.2007 Date Revised 28.01.2008 published: Print-Electronic CommentIn: Langmuir. 2007 Jul 17;23(15):8200-5. - PMID 17580921 Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |