Stable incorporation of gold nanorods into N-isopropylacrylamide hydrogels and their rapid shrinkage induced by near-infrared laser irradiation
In this study, we prepared gold nanorod (NR)-embedded N-isopropylacrylamide (NIPAM) hydrogels and studied their volume phase transition behavior induced by near-infrared (near-IR) laser irradiation utilizing the photothermal conversion characteristics of the NRs. When poly(ethylene glycol)-modified...
Publié dans: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 23(2007), 7 vom: 27. März, Seite 4012-8 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , |
Format: | Article |
Langue: | English |
Publié: |
2007
|
Accès à la collection: | Langmuir : the ACS journal of surfaces and colloids |
Sujets: | Journal Article |
Résumé: | In this study, we prepared gold nanorod (NR)-embedded N-isopropylacrylamide (NIPAM) hydrogels and studied their volume phase transition behavior induced by near-infrared (near-IR) laser irradiation utilizing the photothermal conversion characteristics of the NRs. When poly(ethylene glycol)-modified NRs were used for the preparation of composite gels, the NRs showed marked dispersion stability in the gel. Near-IR laser irradiation of the gel (cylindrical shape, diameter = 140 microm) under the following conditions, NR concentrations in the gel > or =100 microM and laser irradiation power > or =490 mW, resulted in shrinkage of the gel in the following manner: (1) waist formation around the irradiation spot and (2) growth of the waist along the axial directions of the gel. The gel shrinking induced by near-IR irradiation occurred much more rapidly than that afforded by a temperature jump, because the former was not accompanied by the skin layer formation, which disturbs the rapid shrinking of the gels. When a composite gel containing the model drug (rhodamine-labeled dextran) was irradiated with a near-IR laser, the rapid release of the drug was observed. Taking advantage of the high spatial resolution of the irradiation point, we further achieved the irradiation-point-specific release of the drug from one such gel |
---|---|
Description: | Date Completed 15.05.2007 Date Revised 09.03.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |