Prediction of GFP spectral properties using artificial neural network

The prediction of the excitation and the emission maxima of green fluorescent protein (GFP) chromophores were investigated by a quantitative structure-property relationship study. A data set of 19 GFP color variants and an additional data set consisting of 29 synthetic GFP chromophores were collecte...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 28(2007), 7 vom: 26. Mai, Seite 1275-89
1. Verfasser: Nantasenamat, Chanin (VerfasserIn)
Weitere Verfasser: Isarankura-Na-Ayudhya, Chartchalerm, Tansila, Natta, Naenna, Thanakorn, Prachayasittikul, Virapong
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Green Fluorescent Proteins 147336-22-9
LEADER 01000naa a22002652 4500
001 NLM168409089
003 DE-627
005 20231223115040.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0561.xml 
035 |a (DE-627)NLM168409089 
035 |a (NLM)17299836 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nantasenamat, Chanin  |e verfasserin  |4 aut 
245 1 0 |a Prediction of GFP spectral properties using artificial neural network 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 04.05.2007 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The prediction of the excitation and the emission maxima of green fluorescent protein (GFP) chromophores were investigated by a quantitative structure-property relationship study. A data set of 19 GFP color variants and an additional data set consisting of 29 synthetic GFP chromophores were collected from the literature. Artificial neural network implementing the back-propagation algorithm was employed. The proposed computational approach reliably predicted the excitation and the emission maxima of GFP chromophores with correlation coefficient exceeding 0.9. The usefulness of quantum chemical descriptors was revealed by a comparative study with other molecular descriptors. Assignment of appropriate protonation state of the chromophore for the GFP color variants data set was shown to be necessary for good predictive performance. Results suggest that the confinement of the GFP chromophore has no significant influence on the predictive performance of the data set used. A comparative investigation with the traditional modeling methods, particularly multiple linear regression and partial least squares, reveals that artificial neural network is the most suitable modeling approach for the GFP spectral properties. It is anticipated that this methodology has great potential in accelerating the design and engineering of novel GFP color variants of scientific or industrial interest 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Green Fluorescent Proteins  |2 NLM 
650 7 |a 147336-22-9  |2 NLM 
700 1 |a Isarankura-Na-Ayudhya, Chartchalerm  |e verfasserin  |4 aut 
700 1 |a Tansila, Natta  |e verfasserin  |4 aut 
700 1 |a Naenna, Thanakorn  |e verfasserin  |4 aut 
700 1 |a Prachayasittikul, Virapong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 28(2007), 7 vom: 26. Mai, Seite 1275-89  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:28  |g year:2007  |g number:7  |g day:26  |g month:05  |g pages:1275-89 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2007  |e 7  |b 26  |c 05  |h 1275-89