|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM16832704X |
003 |
DE-627 |
005 |
20231223114851.0 |
007 |
tu |
008 |
231223s2007 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0561.xml
|
035 |
|
|
|a (DE-627)NLM16832704X
|
035 |
|
|
|a (NLM)17291019
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zou, Aihua
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Influence of ionic charges on the bilayers of lamellar phases
|
264 |
|
1 |
|c 2007
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.07.2007
|
500 |
|
|
|a Date Revised 06.03.2007
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a The influence of ionic charges on the mesophases in the ternary system of C(12-16)E(6) (LA 070), ethylhexylglycerid (EHG), and water was studied. The charge was introduced by adding the ionic surfactant SDS (sodium dodecyl sulfate). The single lamellar phase (5 wt % LA 070 and 240 mM EHG in water) yields a bluish homogeneous solution. With the addition of SDS, the samples become more and more clear. Rheology measurements indicate that increased charge density increases the storage modulus G', and the lamellar phases show typical behavior of a viscoelastic fluid with a yield stress at higher SDS concentration. SAXS measurements show that the interlamellar distance D decreases with SDS concentration. The addition of ionic surfactants suppresses the Helfrich undulations, flattens the bilayers, and decreases interbilayer spacing due to electrostatic repulsions of the ionic surfactant head groups. Furthermore, the L(alpha) phase transforms into vesicle phases as the SDS concentration is increased. Second, it is shown that with added NaCl electrolyte the phase with charged surfactant behaves again in the same way as the initial uncharged system. The addition of salt screens the electrostatic interaction, which leads to a higher flexibility of the bilayers and a decrease of the storage modulus G'. Theoretical calculations show that the shear moduli of the L(alpha) phases are much smaller than the osmotic pressure of the systems. Several models are proposed for the explanation of the shear moduli. The model due to Lekkerkerker for the electric contribution of the bending constant of the bilayer seems to yield good results for the transition to vesicles
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Hoffmann, Heinz
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Freiberger, Norbert
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Glatter, Otto
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 23(2007), 6 vom: 13. März, Seite 2977-84
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:23
|g year:2007
|g number:6
|g day:13
|g month:03
|g pages:2977-84
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 23
|j 2007
|e 6
|b 13
|c 03
|h 2977-84
|