On the convergence of generalized simultaneous iterative reconstruction algorithms
In this paper, we generalize the widely used simultaneous block iterative reconstruction algorithm and show that it converges, at a linear rate, to a weighted least-squares and weighted minimum-norm reconstruction. Our theoretical result provides a much simpler proof of the convergence properties ob...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 16(2007), 1 vom: 29. Jan., Seite 1-6 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2007
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Evaluation Study Journal Article |
Zusammenfassung: | In this paper, we generalize the widely used simultaneous block iterative reconstruction algorithm and show that it converges, at a linear rate, to a weighted least-squares and weighted minimum-norm reconstruction. Our theoretical result provides a much simpler proof of the convergence properties obtained by Jiang and Wang and covers a much more general class of algorithms. The frequency domain iterative reconstruction algorithm is then introduced as a special application of our theory |
---|---|
Beschreibung: | Date Completed 28.02.2007 Date Revised 10.12.2019 published: Print Citation Status MEDLINE |
ISSN: | 1941-0042 |