|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM168254476 |
003 |
DE-627 |
005 |
20231223114717.0 |
007 |
tu |
008 |
231223s2007 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0561.xml
|
035 |
|
|
|a (DE-627)NLM168254476
|
035 |
|
|
|a (NLM)17283371
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Brewer, Marin Talbot
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Morphological variation in tomato
|b a comprehensive study of quantitative trait loci controlling fruit shape and development
|
264 |
|
1 |
|c 2007
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 11.10.2007
|
500 |
|
|
|a Date Revised 07.12.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Variation in fruit morphology is a prevalent characteristic among cultivated tomato. The genetic and developmental mechanisms underlying similarities and differences in shape between the fruit of two elongated tomato varieties were investigated. Fruit from two F2 populations constructed from either Solanum lycopersicum cv. Howard German or cv. Banana Legs crossed with S. pimpinellifolium accession LA1589, and one BC1 population constructed with S. lycopersicum Howard German as the recurrent parent, were analysed for shape by using a new software program Tomato Analyzer. Quantitative trait loci (QTLs) controlling 15 individual shape attributes were mapped by both single and multitrait composite interval mapping in each population. In addition, principal components analysis and canonical discriminant analysis were conducted on these shape attributes to determine the greatest sources of variation among and between the populations. Individual principal components and canonical variates were subjected to QTL analysis to map regions of the genome influencing fruit shape in the cultivars. Common and unique regions, as well as previously known and novel QTLs, underlying fruit morphology in tomato were identified. Four major loci were found to control multiple fruit shape traits, principal components, and canonical variates in the populations. In addition, QTLs associated with the principal components better revealed regions of the genome that varied among populations than did the QTL associated with canonical variates. The QTL identified can be compared across additional populations of tomato and other fruit-bearing crop species
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
7 |
|a DNA, Plant
|2 NLM
|
700 |
1 |
|
|a Moyseenko, Jennifer B
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Monforte, Antonio J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a van der Knaap, Esther
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 58(2007), 6 vom: 01., Seite 1339-49
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:58
|g year:2007
|g number:6
|g day:01
|g pages:1339-49
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 58
|j 2007
|e 6
|b 01
|h 1339-49
|