Examination of interactions of oppositely charged proteins in gels

Understanding the interactions of proteins with one another serves as an important step for developing faster protein separation methods. To examine protein-protein interactions of oppositely charged proteins, fluorescently labeled albumin and poly-l-lysine were subjected to electrophoresis in agaro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 23(2007), 4 vom: 13. Feb., Seite 2021-9
1. Verfasser: Ramasamy, Perumal (VerfasserIn)
Weitere Verfasser: El-Maghrabi, M Raafat, Halada, Gary, Miller, Lisa M, Rafailovich, Miriam
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Gels Ions Proteins Solutions Sodium Chloride 451W47IQ8X
Beschreibung
Zusammenfassung:Understanding the interactions of proteins with one another serves as an important step for developing faster protein separation methods. To examine protein-protein interactions of oppositely charged proteins, fluorescently labeled albumin and poly-l-lysine were subjected to electrophoresis in agarose gels, in which the cationic albumin and the anionic poly-L-lysine were allowed to migrate toward each other and interact. Fluorescence microscopy was used to image fluorescently tagged proteins in the gel. The secondary structure of the proteins in solution was studied using conventional FTIR spectroscopy. Results showed that sharp interfaces were formed where FITC tagged albumin met poly-L-lysine and that the interfaces did not migrate after they had been formed. The position of the interface in the gel was found to be linearly dependent upon the relative concentration of the proteins. The formation of the interface also depended upon the fluorescent tag attached to the protein. The size of the aggregates at the interface, the fluorescence intensity modifications, and the mobility of the interface for different pore sizes of the gel were investigated. It was observed that the interface was made up of aggregates of about 1 microm in size. Using dynamic light scattering, it was observed that the size of the aggregates that formed due to interactions of oppositely charged proteins depended upon the fluorescent tags attached to the proteins. The addition of small amounts of poly-L-lysine to solutions containing FITC albumin decreased the zeta potential drastically. For this, we propose a model suggesting that adding small amounts of poly-L-lysine to solutions containing FITC -albumin favors the formation of macromolecular complexes having FITC albumin molecules on its surface. Although oppositely charged FITC tagged poly-L-lysine and FITC tagged albumin influence each other's migration velocities by forming aggregates, there were no observable secondary structural modifications when the proteins were mixed in solution
Beschreibung:Date Completed 02.05.2007
Date Revised 19.11.2015
published: Print
Citation Status MEDLINE
ISSN:1520-5827