Adsorption of trypsin on hydrophilic and hydrophobic surfaces

The adsorption of trypsin onto polystyrene and silica surfaces was investigated by reflectometry, spectroscopic methods, and atomic force microscopy (AFM). The affinity of trypsin for the hydrophobic polystyrene surface was higher than that for the hydrophilic silica surface, but steady-state adsorb...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1991. - 23(2007), 4 vom: 13. Feb., Seite 2000-6
1. Verfasser: Koutsopoulos, Sotirios (VerfasserIn)
Weitere Verfasser: Patzsch, Katja, Bosker, Wouter T E, Norde, Willem
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Solutions Water 059QF0KO0R Trypsin EC 3.4.21.4
Beschreibung
Zusammenfassung:The adsorption of trypsin onto polystyrene and silica surfaces was investigated by reflectometry, spectroscopic methods, and atomic force microscopy (AFM). The affinity of trypsin for the hydrophobic polystyrene surface was higher than that for the hydrophilic silica surface, but steady-state adsorbed amounts were about the same at both surfaces. The conformational characteristics of trypsin immobilized on silica and polystyrene nanospheres were analyzed in situ by circular dichroism and fluorescence spectroscopy. Upon adsorption the trypsin molecules underwent structural changes at the secondary and tertiary level, although the nature of the structural alterations was different for silica and polystyrene surfaces. AFM imaging of trypsin adsorbed on silica showed clustering of enzyme molecules. Rinsing the silica surface resulted in 20% desorption of the originally adsorbed enzyme molecules. Adsorption of trypsin on the surface of polystyrene was almost irreversible with respect to dilution. After adsorption on silica the enzymatic activity of trypsin was 10 times lower, and adsorbed on polystyrene the activity was completely suppressed. The trypsin molecules that were desorbed from the sorbent surfaces by dilution with buffer regained full enzymatic activity
Beschreibung:Date Completed 02.05.2007
Date Revised 21.11.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:0743-7463