Formation of single-crystalline aragonite tablets/films via an amorphous precursor

Thin tablets and films of calcium carbonate have been grown at the air-water interface via an amorphous precursor route using soluble process-directing agents and a Langmuir monolayer based on resorcarene. By using appropriate concentrations of poly(acrylic acid-sodium salt) in combination with Mg2+...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 23(2007), 4 vom: 13. Feb., Seite 1988-94
1. Verfasser: Amos, Fairland F (VerfasserIn)
Weitere Verfasser: Sharbaugh, Denise M, Talham, Daniel R, Gower, Laurie B, Fricke, Marc, Volkmer, Dirk
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Calcium Carbonate H0G9379FGK
Beschreibung
Zusammenfassung:Thin tablets and films of calcium carbonate have been grown at the air-water interface via an amorphous precursor route using soluble process-directing agents and a Langmuir monolayer based on resorcarene. By using appropriate concentrations of poly(acrylic acid-sodium salt) in combination with Mg2+ ion, an initially amorphous film is deposited on the monolayer template, which subsequently crystallizes into a mosaic film composed of a mixture of single-crystalline and spherulitic patches of calcite and aragonite. Of particular importance is the synthesis of single-crystalline "tablets" of aragonite (approximately 600 nm thick), because this phase generally forms needle-like polycrystalline aggregates when grown in vitro. To our knowledge, a tabular single-crystalline morphology of aragonite has only been observed in the nacreous layer of mollusk shells. Therefore, this in vitro system may serve as a useful model for examining mechanistic issues pertinent to biomineralization, such as the influence of organic templates on nucleation from an amorphous phase
Beschreibung:Date Completed 02.05.2007
Date Revised 21.11.2013
published: Print
Citation Status MEDLINE
ISSN:1520-5827