High-performance object tracking and fixation with an online neural estimator

Vision-based target tracking and fixation to keep objects that move in three dimensions in view is important for many tasks in several fields including intelligent transportation systems and robotics. Much of the visual control literature has focused on the kinematics of visual control and ignored a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1997. - 37(2007), 1 vom: 05. Feb., Seite 213-23
1. Verfasser: Kumarawadu, Sisil (VerfasserIn)
Weitere Verfasser: Watanabe, Keigo, Lee, Tsu-Tian
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Evaluation Study Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM168207508
003 DE-627
005 20250208002501.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0561.xml 
035 |a (DE-627)NLM168207508 
035 |a (NLM)17278573 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kumarawadu, Sisil  |e verfasserin  |4 aut 
245 1 0 |a High-performance object tracking and fixation with an online neural estimator 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 28.02.2007 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Vision-based target tracking and fixation to keep objects that move in three dimensions in view is important for many tasks in several fields including intelligent transportation systems and robotics. Much of the visual control literature has focused on the kinematics of visual control and ignored a number of significant dynamic control issues that limit performance. In line with this, this paper presents a neural network (NN)-based binocular tracking scheme for high-performance target tracking and fixation with minimum sensory information. The procedure allows the designer to take into account the physical (Lagrangian dynamics) properties of the vision system in the control law. The design objective is to synthesize a binocular tracking controller that explicitly takes the systems dynamics into account, yet needs no knowledge of dynamic nonlinearities and joint velocity sensory information. The combined neurocontroller-observer scheme can guarantee the uniform ultimate bounds of the tracking, observer, and NN weight estimation errors under fairly general conditions on the controller-observer gains. The controller is tested and verified via simulation tests in the presence of severe target motion changes 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Watanabe, Keigo  |e verfasserin  |4 aut 
700 1 |a Lee, Tsu-Tian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1997  |g 37(2007), 1 vom: 05. Feb., Seite 213-23  |w (DE-627)NLM098252887  |x 1083-4419  |7 nnns 
773 1 8 |g volume:37  |g year:2007  |g number:1  |g day:05  |g month:02  |g pages:213-23 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2007  |e 1  |b 05  |c 02  |h 213-23