|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM168153084 |
003 |
DE-627 |
005 |
20231223114512.0 |
007 |
tu |
008 |
231223s2007 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0561.xml
|
035 |
|
|
|a (DE-627)NLM168153084
|
035 |
|
|
|a (NLM)17272833
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Pereira, L A R
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Methyl recycling activities are co-ordinately regulated during plant development
|
264 |
|
1 |
|c 2007
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 11.07.2007
|
500 |
|
|
|a Date Revised 03.12.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a A large number of compounds including lignin, phospholipids, pectin, DNA, mRNA, and proteins require methyl groups for their functionality. A detailed study of the expression and activities of two enzymes, adenosine kinase (ADK) and S-adenosylhomocysteine hydrolase (SAHH), which are both required for the maintenance and recycling of S-adenosylmethionine-dependent methylation in plants, was carried out. The abundance and tissue localization of ADK and SAHH transcripts and protein were monitored along with their enzyme activities in leaves, stems, buds, siliques, and roots of Arabidopsis. In all but roots and seed coats, the transcript abundance of ADK and SAHH fluctuated co-ordinately, matching changes in their protein and enzyme activities. To evaluate whether this expression pattern was associated with methyl recycling, the protein content and distribution of S-adenosylmethionine synthetase and phosphoethanolamine N-methyltransferase, a key methyltransferase involved in phospholipid synthesis, were investigated. These were found to accumulate in a pattern similar to ADK and SAHH. ADK and SAHH protein and transcript amounts were shown to fluctuate similarly in tissues accumulating lignin. Additionally, the amounts of ADK and SAHH mRNAs were also found at high levels in inflorescence meristems likely to support their higher rates of cell division. Thus, the results point to a co-ordinated and probably transcriptional regulation of these genes in most organs of Arabidopsis; SAHH abundance is distinctly higher in seeds and roots which suggests it may have a non-methyl-related role in these organs
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Arabidopsis Proteins
|2 NLM
|
650 |
|
7 |
|a ADK1 protein, Arabidopsis
|2 NLM
|
650 |
|
7 |
|a EC 2.7.1.-
|2 NLM
|
650 |
|
7 |
|a Protein-Tyrosine Kinases
|2 NLM
|
650 |
|
7 |
|a EC 2.7.10.1
|2 NLM
|
650 |
|
7 |
|a Protein Serine-Threonine Kinases
|2 NLM
|
650 |
|
7 |
|a EC 2.7.11.1
|2 NLM
|
700 |
1 |
|
|a Todorova, M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cai, X
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Makaroff, C A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Emery, R J N
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Moffatt, B A
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 58(2007), 5 vom: 02., Seite 1083-98
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:58
|g year:2007
|g number:5
|g day:02
|g pages:1083-98
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 58
|j 2007
|e 5
|b 02
|h 1083-98
|