A MAP approach for joint motion estimation, segmentation, and super resolution

Super resolution image reconstruction allows the recovery of a high-resolution (HR) image from several low-resolution images that are noisy, blurred, and down sampled. In this paper, we present a joint formulation for a complex super-resolution problem in which the scenes contain multiple independen...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1997. - 16(2007), 2 vom: 21. Feb., Seite 479-90
1. Verfasser: Shen, Huanfeng (VerfasserIn)
Weitere Verfasser: Zhang, Liangpei, Huang, Bo, Li, Pingxiang
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM168122138
003 DE-627
005 20250208000806.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0561.xml 
035 |a (DE-627)NLM168122138 
035 |a (NLM)17269640 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shen, Huanfeng  |e verfasserin  |4 aut 
245 1 2 |a A MAP approach for joint motion estimation, segmentation, and super resolution 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 28.02.2007 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Super resolution image reconstruction allows the recovery of a high-resolution (HR) image from several low-resolution images that are noisy, blurred, and down sampled. In this paper, we present a joint formulation for a complex super-resolution problem in which the scenes contain multiple independently moving objects. This formulation is built upon the maximum a posteriori (MAP) framework, which judiciously combines motion estimation, segmentation, and super resolution together. A cyclic coordinate descent optimization procedure is used to solve the MAP formulation, in which the motion fields, segmentation fields, and HR images are found in an alternate manner given the two others, respectively. Specifically, the gradient-based methods are employed to solve the HR image and motion fields, and an iterated conditional mode optimization method to obtain the segmentation fields. The proposed algorithm has been tested using a synthetic image sequence, the "Mobile and Calendar" sequence, and the original "Motorcycle and Car" sequence. The experiment results and error analyses verify the efficacy of this algorithm 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zhang, Liangpei  |e verfasserin  |4 aut 
700 1 |a Huang, Bo  |e verfasserin  |4 aut 
700 1 |a Li, Pingxiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1997  |g 16(2007), 2 vom: 21. Feb., Seite 479-90  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:16  |g year:2007  |g number:2  |g day:21  |g month:02  |g pages:479-90 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 16  |j 2007  |e 2  |b 21  |c 02  |h 479-90