Flexible skew-symmetric shape model for shape representation, classification, and sampling

Skewness of shape data often arises in applications (e.g., medical image analysis) and is usually overlooked in statistical shape models. In such cases, a Gaussian assumption is unrealistic and a formulation of a general shape model which accounts for skewness is in order. In this paper, we present...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 16(2007), 2 vom: 21. Feb., Seite 317-28
1. Verfasser: Baloch, Sajjad H (VerfasserIn)
Weitere Verfasser: Krim, Hamid
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM168122006
003 DE-627
005 20231223114432.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0561.xml 
035 |a (DE-627)NLM168122006 
035 |a (NLM)17269627 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Baloch, Sajjad H  |e verfasserin  |4 aut 
245 1 0 |a Flexible skew-symmetric shape model for shape representation, classification, and sampling 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 28.02.2007 
500 |a Date Revised 26.10.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Skewness of shape data often arises in applications (e.g., medical image analysis) and is usually overlooked in statistical shape models. In such cases, a Gaussian assumption is unrealistic and a formulation of a general shape model which accounts for skewness is in order. In this paper, we present a novel statistical method for shape modeling, which we refer to as the flexible skew-symmetric shape model (FSSM). The model is sufficiently flexible to accommodate a departure from Gaussianity of the data and is fairly general to learn a "mean shape" (template), with a potential for classification and random generation of new realizations of a given shape. Robustness to skewness results from deriving the FSSM from an extended class of flexible skew-symmetric distributions. In addition, we demonstrate that the model allows us to extract principal curves in a point cloud. The idea is to view a shape as a realization of a spatial random process and to subsequently learn a shape distribution which captures the inherent variability of realizations, provided they remain, with high probability, within a certain neighborhood range around a mean. Specifically, given shape realizations, FSSM is formulated as a joint bimodal distribution of angle and distance from the centroid of an aggregate of random points. Mean shape is recovered from the modes of the distribution, while the maximum likelihood criterion is employed for classification 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Krim, Hamid  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 16(2007), 2 vom: 21. Feb., Seite 317-28  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:16  |g year:2007  |g number:2  |g day:21  |g month:02  |g pages:317-28 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 16  |j 2007  |e 2  |b 21  |c 02  |h 317-28