Three-dimensional spatial and temporal temperature imaging in gel phantoms using backscattered ultrasound
Thermal therapies such as radio frequency, heated saline, and high-intensity focused ultrasound ablations are often performed suboptimally due to the inability to monitor the spatial and temporal distribution of delivered heat and the extent of tissue necrosis. Ultrasound-based temperature imaging r...
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1999. - 54(2007), 1 vom: 16. Jan., Seite 23-31 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2007
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
Schlagworte: | Evaluation Study Journal Article Gels |
Zusammenfassung: | Thermal therapies such as radio frequency, heated saline, and high-intensity focused ultrasound ablations are often performed suboptimally due to the inability to monitor the spatial and temporal distribution of delivered heat and the extent of tissue necrosis. Ultrasound-based temperature imaging recently was proposed as a means to measure noninvasively the deposition of heat by tracking the echo arrival time shifts in the ultrasound backscatter caused by changes in speed of sound and tissue thermal expansion. However, the clinical applicability of these techniques has been hampered by the two-dimensional (2-D) nature of traditional ultrasound imaging, and the complexity of the temperature dependence of sound speed for biological tissues. In this paper, we present methodology, results, and validation of a 3-D spatial and temporal ultrasound temperature estimation technique in an alginate-based gel phantom to track the evolution of heat deposition over a treatment volume. The technique was experimentally validated for temperature rises up to approximately 10 degrees C by comparison with measurements from thermocouples that were embedded in the gel. Good agreement (rms difference = 0.12 degrees C, maximum difference = 0.24 degrees C) was observed between the noninvasive ultrasound temperature estimates and thermocouple measurements. Based on the results obtained for the temperature range studied in this paper, the technique demonstrates potential for applicability in image guidance of thermal therapy for determining the location of the therapeutic focal spot and assessing the extent of the heated region at subablative intensities |
---|---|
Beschreibung: | Date Completed 07.02.2007 Date Revised 10.12.2019 published: Print Citation Status MEDLINE |
ISSN: | 0885-3010 |