Robust object recognition with cortex-like mechanisms

We introduce a new general framework for the recognition of complex visual scenes, which is motivated by biology: We describe a hierarchical system that closely follows the organization of visual cortex and builds an increasingly complex and invariant feature representation by alternating between a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 29(2007), 3 vom: 16. März, Seite 411-26
1. Verfasser: Serre, Thomas (VerfasserIn)
Weitere Verfasser: Wolf, Lior, Bileschi, Stanley, Riesenhuber, Maximilian, Poggio, Tomaso
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Evaluation Study Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM167708961
003 DE-627
005 20231223113533.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0559.xml 
035 |a (DE-627)NLM167708961 
035 |a (NLM)17224612 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Serre, Thomas  |e verfasserin  |4 aut 
245 1 0 |a Robust object recognition with cortex-like mechanisms 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 27.03.2007 
500 |a Date Revised 08.04.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We introduce a new general framework for the recognition of complex visual scenes, which is motivated by biology: We describe a hierarchical system that closely follows the organization of visual cortex and builds an increasingly complex and invariant feature representation by alternating between a template matching and a maximum pooling operation. We demonstrate the strength of the approach on a range of recognition tasks: From invariant single object recognition in clutter to multiclass categorization problems and complex scene understanding tasks that rely on the recognition of both shape-based as well as texture-based objects. Given the biological constraints that the system had to satisfy, the approach performs surprisingly well: It has the capability of learning from only a few training examples and competes with state-of-the-art systems. We also discuss the existence of a universal, redundant dictionary of features that could handle the recognition of most object categories. In addition to its relevance for computer vision, the success of this approach suggests a plausibility proof for a class of feedforward models of object recognition in cortex 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Wolf, Lior  |e verfasserin  |4 aut 
700 1 |a Bileschi, Stanley  |e verfasserin  |4 aut 
700 1 |a Riesenhuber, Maximilian  |e verfasserin  |4 aut 
700 1 |a Poggio, Tomaso  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 29(2007), 3 vom: 16. März, Seite 411-26  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:29  |g year:2007  |g number:3  |g day:16  |g month:03  |g pages:411-26 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 3  |b 16  |c 03  |h 411-26