|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM167584790 |
003 |
DE-627 |
005 |
20231223113251.0 |
007 |
tu |
008 |
231223s2007 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0559.xml
|
035 |
|
|
|a (DE-627)NLM167584790
|
035 |
|
|
|a (NLM)17211079
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Ravelli, Raimond B G
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Plastic-embedded protein crystals
|
264 |
|
1 |
|c 2007
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.03.2007
|
500 |
|
|
|a Date Revised 09.01.2007
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Rapid vitrification followed by the replacement of the vitrified water by a solvent (freeze substitution) and then resin is a widely used procedure for preparing biological samples for electron microscopy. The resulting plastic-embedded samples permit convenient room-temperature sectioning (microtomy) and can yield well preserved cellular structures. Here this procedure has been applied to crystalline protein samples, and it is shown that it is possible to freeze-substitute vitrified crystals while preserving some of their original diffraction properties. The plastic-embedded crystals were used to collect a series of complete room-temperature data sets at a powerful macromolecular crystallography synchrotron beamline. Whereas one normally observes specific damage to disulfide bonds upon X-ray radiation, no such damage was seen for the plastic-embedded sample. The X-ray diffraction data allowed an initial atomic analysis to be made of the effects of freeze-substitution and plastic embedding on biological samples
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Acrylic Resins
|2 NLM
|
650 |
|
7 |
|a Coated Materials, Biocompatible
|2 NLM
|
650 |
|
7 |
|a hen egg lysozyme
|2 NLM
|
650 |
|
7 |
|a EC 3.2.1.-
|2 NLM
|
650 |
|
7 |
|a Muramidase
|2 NLM
|
650 |
|
7 |
|a EC 3.2.1.17
|2 NLM
|
700 |
1 |
|
|a Haselmann-Weiss, Uta
|e verfasserin
|4 aut
|
700 |
1 |
|
|a McGeehan, John E
|e verfasserin
|4 aut
|
700 |
1 |
|
|a McCarthy, Andrew A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Marquez, Josan A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Antony, Claude
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Frangakis, Achilleas S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Stranzl, Gudrun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of synchrotron radiation
|d 1994
|g 14(2007), Pt 1 vom: 15. Jan., Seite 128-32
|w (DE-627)NLM09824129X
|x 1600-5775
|7 nnns
|
773 |
1 |
8 |
|g volume:14
|g year:2007
|g number:Pt 1
|g day:15
|g month:01
|g pages:128-32
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_2005
|
951 |
|
|
|a AR
|
952 |
|
|
|d 14
|j 2007
|e Pt 1
|b 15
|c 01
|h 128-32
|