Contrasting effects of temperature on the rheology of normal and reverse wormlike micelles
Wormlike micelles are flexible polymerlike chains formed by the self-assembly of amphiphilic molecules either in water ("normal" worms) or in oil ("reverse" worms). Normal and reverse worms have both been studied extensively and have generally been found to exhibit analogous rheo...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 23(2007), 2 vom: 16. Jan., Seite 372-6 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2007
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Wormlike micelles are flexible polymerlike chains formed by the self-assembly of amphiphilic molecules either in water ("normal" worms) or in oil ("reverse" worms). Normal and reverse worms have both been studied extensively and have generally been found to exhibit analogous rheological properties (e.g., Maxwell fluidlike behavior). Here, we report a hitherto unexplored difference between these two classes of micelles pertaining to the effect of temperature on their rheological properties. For normal worms, the plateau modulus remains constant as the sample is heated while the relaxation time exponentially decreases. For reverse worms, however, both the plateau modulus and the relaxation time decrease exponentially upon heating. Consequently, the zero-shear viscosity of reverse worms decreases more rapidly with temperature than for normal worms. To explain these differences, we propose that increasing the temperature weakens the driving force for micellization in reverse worms whereas it only accelerates the dynamics of surfactant exchange in normal worms |
---|---|
Beschreibung: | Date Completed 17.07.2007 Date Revised 09.01.2007 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |