|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM167392913 |
003 |
DE-627 |
005 |
20231223112834.0 |
007 |
tu |
008 |
231223s2007 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0558.xml
|
035 |
|
|
|a (DE-627)NLM167392913
|
035 |
|
|
|a (NLM)17190495
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wiedemair, Justyna
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a In-situ AFM studies of the phase-transition behavior of single thermoresponsive hydrogel particles
|
264 |
|
1 |
|c 2007
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.02.2007
|
500 |
|
|
|a Date Revised 21.11.2008
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The volume phase transition (VPT) behavior of individual thermally responsive poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAm-co-AAc) hydrogel microparticles was studied by in-situ dynamic mode atomic force microscopy (AFM) and force spectroscopy during heating and cooling cycles. Hydrogel samples were prepared by electrostatic immobilization of microparticles to amine-modified gold surfaces. The AFM studies of particle deswelling were performed by varying the force applied on the particles during imaging as a function of the geometry and material of the AFM probe. Aluminum-coated silicon cantilevers were found to influence substantially the behavior of the particles during the VPT, leading to a significant shape change. Low force impact magnetic excitation of the AFM probe (MAC mode) during dynamic mode measurements resulted in an undisturbed deswelling behavior enabling observation of the expected volume changes of the particles without significant tip-sample interaction. Hence, MAC-mode AFM was determined to be the most suitable technique for in-situ AFM studies on volume and shape changes at single hydrogel particles during VPT. Elasticity measurements performed at single particles at temperatures below and above the VPT revealed a 15-fold increase in the Young's modulus after passing the VPT, indicating the transition from a soft, swollen network to a stiffer, deswollen state
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, N.I.H., Extramural
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Acrylamides
|2 NLM
|
650 |
|
7 |
|a Acrylates
|2 NLM
|
650 |
|
7 |
|a Hydrogels
|2 NLM
|
650 |
|
7 |
|a N-isopropylacrylamide-acrylic acid copolymer
|2 NLM
|
650 |
|
7 |
|a Polymers
|2 NLM
|
650 |
|
7 |
|a Gold
|2 NLM
|
650 |
|
7 |
|a 7440-57-5
|2 NLM
|
700 |
1 |
|
|a Serpe, Michael J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Jongseong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Masson, Jean-Francois
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lyon, L Andrew
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mizaikoff, Boris
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kranz, Christine
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 23(2007), 1 vom: 02. Jan., Seite 130-7
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:23
|g year:2007
|g number:1
|g day:02
|g month:01
|g pages:130-7
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 23
|j 2007
|e 1
|b 02
|c 01
|h 130-7
|