Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations

Standard density functional theory (DFT) is augmented with a damped empirical dispersion term. The damping function is optimized on a small, well balanced set of 22 van der Waals (vdW) complexes and verified on a validation set of 58 vdW complexes. Both sets contain biologically relevant molecules s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 28(2007), 2 vom: 30. Jan., Seite 555-69
1. Verfasser: Jurecka, Petr (VerfasserIn)
Weitere Verfasser: Cerný, Jirí, Hobza, Pavel, Salahub, Dennis R
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Comparative Study Journal Article Research Support, Non-U.S. Gov't Organic Chemicals
LEADER 01000naa a22002652 4500
001 NLM167355007
003 DE-627
005 20231223112744.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0558.xml 
035 |a (DE-627)NLM167355007 
035 |a (NLM)17186489 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jurecka, Petr  |e verfasserin  |4 aut 
245 1 0 |a Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 01.02.2007 
500 |a Date Revised 09.03.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Standard density functional theory (DFT) is augmented with a damped empirical dispersion term. The damping function is optimized on a small, well balanced set of 22 van der Waals (vdW) complexes and verified on a validation set of 58 vdW complexes. Both sets contain biologically relevant molecules such as nucleic acid bases. Results are in remarkable agreement with reference high-level wave function data based on the CCSD(T) method. The geometries obtained by full gradient optimization are in very good agreement with the best available theoretical reference. In terms of the standard deviation and average errors, results including the empirical dispersion term are clearly superior to all pure density functionals investigated-B-LYP, B3-LYP, PBE, TPSS, TPSSh, and BH-LYP-and even surpass the MP2/cc-pVTZ method. The combination of empirical dispersion with the TPSS functional performs remarkably well. The most critical part of the empirical dispersion approach is the damping function. The damping parameters should be optimized for each density functional/basis set combination separately. To keep the method simple, we optimized mainly a single factor, s(R), scaling globally the vdW radii. For good results, a basis set of at least triple-zeta quality is required and diffuse functions are recommended, since the basis set superposition error seriously deteriorates the results. On average, the dispersion contribution to the interaction energy missing in the DFT functionals examined here is about 15 and 100% for the hydrogen-bonded and stacked complexes considered, respectively 
650 4 |a Comparative Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Organic Chemicals  |2 NLM 
700 1 |a Cerný, Jirí  |e verfasserin  |4 aut 
700 1 |a Hobza, Pavel  |e verfasserin  |4 aut 
700 1 |a Salahub, Dennis R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 28(2007), 2 vom: 30. Jan., Seite 555-69  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:28  |g year:2007  |g number:2  |g day:30  |g month:01  |g pages:555-69 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2007  |e 2  |b 30  |c 01  |h 555-69