Support vector machine based training of multilayer feedforward neural networks as optimized by particle swarm algorithm : application in QSAR studies of bioactivity of organic compounds

Multilayer feedforward neural networks (MLFNNs) are important modeling techniques widely used in QSAR studies for their ability to represent nonlinear relationships between descriptors and activity. However, the problems of overfitting and premature convergence to local optima still pose great chall...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 28(2007), 2 vom: 30. Jan., Seite 519-27
1. Verfasser: Lin, Wei-Qi (VerfasserIn)
Weitere Verfasser: Jiang, Jian-Hui, Zhou, Yan-Ping, Wu, Hai-Long, Shen, Guo-Li, Yu, Ru-Qin
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Cyclooxygenase 2 Inhibitors Imidazoles
LEADER 01000caa a22002652 4500
001 NLM16735499X
003 DE-627
005 20250207214137.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0558.xml 
035 |a (DE-627)NLM16735499X 
035 |a (NLM)17186488 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lin, Wei-Qi  |e verfasserin  |4 aut 
245 1 0 |a Support vector machine based training of multilayer feedforward neural networks as optimized by particle swarm algorithm  |b application in QSAR studies of bioactivity of organic compounds 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 01.02.2007 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Multilayer feedforward neural networks (MLFNNs) are important modeling techniques widely used in QSAR studies for their ability to represent nonlinear relationships between descriptors and activity. However, the problems of overfitting and premature convergence to local optima still pose great challenges in the practice of MLFNNs. To circumvent these problems, a support vector machine (SVM) based training algorithm for MLFNNs has been developed with the incorporation of particle swarm optimization (PSO). The introduction of the SVM based training mechanism imparts the developed algorithm with inherent capacity for combating the overfitting problem. Moreover, with the implementation of PSO for searching the optimal network weights, the SVM based learning algorithm shows relatively high efficiency in converging to the optima. The proposed algorithm has been evaluated using the Hansch data set. Application to QSAR studies of the activity of COX-2 inhibitors is also demonstrated. The results reveal that this technique provides superior performance to backpropagation (BP) and PSO training neural networks 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Cyclooxygenase 2 Inhibitors  |2 NLM 
650 7 |a Imidazoles  |2 NLM 
700 1 |a Jiang, Jian-Hui  |e verfasserin  |4 aut 
700 1 |a Zhou, Yan-Ping  |e verfasserin  |4 aut 
700 1 |a Wu, Hai-Long  |e verfasserin  |4 aut 
700 1 |a Shen, Guo-Li  |e verfasserin  |4 aut 
700 1 |a Yu, Ru-Qin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 28(2007), 2 vom: 30. Jan., Seite 519-27  |w (DE-627)NLM098138448  |x 0192-8651  |7 nnns 
773 1 8 |g volume:28  |g year:2007  |g number:2  |g day:30  |g month:01  |g pages:519-27 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2007  |e 2  |b 30  |c 01  |h 519-27