Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images

In this paper, we describe a multiscale and multishape morphological method for pattern-based analysis and classification of gray-scale images using connected operators. Compared with existing methods, which use structuring elements, our method has three advantages. First, in our method, the time ne...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 29(2007), 2 vom: 16. Feb., Seite 272-85
1. Verfasser: Urbach, Erik R (VerfasserIn)
Weitere Verfasser: Roerdink, Jos B T M, Wilkinson, Michael H F
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM167201786
003 DE-627
005 20231223112422.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0557.xml 
035 |a (DE-627)NLM167201786 
035 |a (NLM)17170480 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Urbach, Erik R  |e verfasserin  |4 aut 
245 1 0 |a Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 23.02.2007 
500 |a Date Revised 15.12.2006 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, we describe a multiscale and multishape morphological method for pattern-based analysis and classification of gray-scale images using connected operators. Compared with existing methods, which use structuring elements, our method has three advantages. First, in our method, the time needed for computing pattern spectra does not depend on the number of scales or shapes used, i.e., the computation time is independent of the dimensions of the pattern spectrum. Second, size and strict shape attributes can be computed, which we use for the construction of joint 2D shape-size pattern spectra. Third, our method is significantly less sensitive to noise and is rotation-invariant. Although rotation invariance can also be approximated by methods using structuring elements at different angles, this tends to be computationally intensive. The classification performance of these methods is discussed using four image sets: Brodatz, COIL-20, COIL-100, and diatoms. The new method obtains better or equal classification performance to the best competitor with a 5 to 9-fold speed gain 
650 4 |a Journal Article 
700 1 |a Roerdink, Jos B T M  |e verfasserin  |4 aut 
700 1 |a Wilkinson, Michael H F  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 29(2007), 2 vom: 16. Feb., Seite 272-85  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:29  |g year:2007  |g number:2  |g day:16  |g month:02  |g pages:272-85 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 2  |b 16  |c 02  |h 272-85